ﻻ يوجد ملخص باللغة العربية
While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films $-$ a chiral bobber $-$ has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the vicinity of the Bloch points, and demonstrate that tuning the details of the Bloch point topology can be used to drastically alter the emergent response properties of chiral bobbers to external fields, which bears great potential for engineering chiral dynamics and cognitive computing.
We report experimental and theoretical evidence for the formation of chiral bobbers - an interfacial topological spin texture - in FeGe films grown by molecular beam epitaxy (MBE). After establishing the presence of skyrmions in FeGe/Si(111) thin fil
Experimental signatures of charge density waves (CDW) in high-temperature superconductors have evoked much recent interest, yet an alternative interpretation has been theoretically raised based on electronic standing waves resulting from quasiparticl
Three-dimensional (3D) topological Dirac semimetal is a new kind of material that has a linear energy dispersion in 3D momentum space and can be viewed as an analog of graphene. Extensive efforts have been devoted to the understanding of bulk materia
We report the magnetotransport properties of HoSb, a semimetal with antiferromagnetic ground state. HoSb shows extremely large magnetoresistance (XMR) and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Different from
We present magneto transport experiments of quasi 3D PbTe wide quantum wells. A plateau-like structure in the Hall resistance is observed, which corresponds to the Shubnikov de Haas oscillations in the same manner as known from the quantum Hall effec