ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of filters on the time-delay interferometry residual laser noise for LISA

77   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Bayle
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Laser Interferometer Space Antenna (LISA) is a European Space Agency mission that aims to measure gravitational waves in the millihertz range. Laser frequency noise enters the interferometric measurements and dominates the expected gravitational signals by many orders of magnitude. Time-delay interferometry (TDI) is a technique that reduces this laser noise by synthesizing virtual equal-arm interferometric measurements. Laboratory experiments and numerical simulations have confirmed that this reduction is sufficient to meet the scientific goals of the mission in proof-of-concept setups. In this paper, we show that the on-board antialiasing filters play an important role in TDIs performance when the flexing of the constellation is accounted for. This coupling was neglected in previous studies. To reach an optimal reduction level, filters with vanishing group delays must be used on board or synthesized off-line. We propose a theoretical model of the residual laser noise including this flexing-filtering coupling. We also use two independent simulators to produce realistic measurement signals and compute the corresponding TDI Michelson variables. We show that our theoretical model agrees with the simulated data with exquisite precision. Using these two complementary approaches, we confirm TDIs ability to reduce laser frequency noise in a more realistic mission setup. The theoretical model provides insight on filter design and implementation.

قيم البحث

اقرأ أيضاً

165 - Gang Wang , Wei-Tou Ni 2017
The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the road of using space missions for detecting low-frequency and middle-frequency GWs. The new LISA GW mission proposes to use arm length of 2.5 Gm (1 Gm = 106 km). The TAIJI GW mission proposes to use arm length of 3 Gm. In order to attain the requisite sensitivity, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have performed the numerical simulation of the time delay interferometry (TDI) for original LISA, ASTROD-GW and eLISA together with a LISA-type mission with a nominal arm length of 2 Gm using the CGC 2.7/CGC2.7.1 ephemeris framework. In this paper, we follow the same procedure to simulate the time delay interferometry numerically for the new LISA mission and the TAIJI mission together with LISA-like missions of arm length 1, 2, 4, 5 and 6 Gm. The resulting optical path differences of the second-generation TDI calculated for new LISA, TAIJI, and LISA-like missions or arm length 1, 2, 4, 5 & 6 Gm are well below their respective limits which the laser frequency noise is required to be suppressed. However, for of the first generation X, Y, and Z TDI configurations, the original requirements need to be relaxed by 3 to 30 fold to be satisfied. For the new LISA and TAIJI, about one order of magnitude relaxation would be good and recommended; this could be borne on the laser stability requirement in view of recent progress in laser stability. Compared with X, Y and Z, the X+Y+Z configuration does have a good cancellation of path length differences and could serve as a null string detection check. We compile and compare the resulting differences of various TDI configurations due to the different arm lengths for various LISA-like mission proposals and for the ASTROD-GW mission proposal.
The proposed space-borne laser interferometric gravitational wave (GW) observatory TianQin adopts a geocentric orbit for its nearly equilateral triangular constellation formed by three identical drag-free satellites. The geocentric distance of each s atellite is $approx 1.0 times 10^{5} ~mathrm{km}$, which makes the armlengths of the interferometer be $approx 1.73 times 10^{5} ~mathrm{km}$. It is aimed to detect the GWs in $0.1 ~mathrm{mHz}-1 ~mathrm{Hz}$. For space-borne detectors, the armlengths are unequal and change continuously which results in that the laser frequency noise is nearly $7-8$ orders of magnitude higher than the secondary noises (such as acceleration noise, optical path noise, etc.). The time delay interferometry (TDI) that synthesizes virtual interferometers from time-delayed one-way frequency measurements has been proposed to suppress the laser frequency noise to the level that is comparable or below the secondary noises. In this work, we evaluate the performance of various data combinations for both first- and second-generation TDI based on the five-year numerically optimized orbits of the TianQins satellites which exhibit the actual rotating and flexing of the constellation. We find that the time differences of symmetric interference paths of the data combinations are $sim 10^{-8}$ s for the first-generation TDI and $sim 10^{-12}$ s for the second-generation TDI, respectively. While the second-generation TDI is guaranteed to be valid for TianQin, the first-generation TDI is possible to be competent for GW signal detection with improved stabilization of the laser frequency noise in the concerned GW frequencies.
We previously showed how the measurements of some eighteen time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches, and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passinggravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use a recently measured noise spectrum of an individual modulator to quantify the contribution of modulator noise to the first and second-generation Time-Delay Interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than $approx 682$ MHz in the case of the unequal-arm Michelson TDI combination $X_1$, $approx 1.08$ GHz for the Sagnac TDI combination $alpha_1$, and $approx 706$ MHz for the symmetrical Sagnac TDI combination $zeta_1$. These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISAs oscillator noise calibration subsystem.
The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $approx 0.75$, which woul d reduce the effective span of usable data to 3 yr. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 yr of mission operations is recommended.
Compact Galactic binary systems with orbital periods of a few hours are expected to be detected in gravitational waves (GW) by LISA or a similar mission. At present, these so-called verification binaries provide predictions for GW frequency and ampli tude. A full polarisation prediction would provide a new method to calibrate LISA and other GW observatories, but requires resolving the orientation of the binary on the sky, which is not currently possible. We suggest a method to determine the elusive binary orientation and hence predict the GW polarisation, using km-scale optical intensity interferometry. The most promising candidate is CD-30$^{circ}$ 11223, consisting of a hot helium subdwarf with $m_B = 12$ and a much fainter white dwarf companion, in a nearly edge-on orbit with period 70.5 min. We estimate that the brighter star is tidally stretched by 6%. Resolving the tidal stretching would provide the binary orientation. The resolution needed is far beyond any current instrument, but not beyond current technology. We consider scenarios where an array of telescopes with km-scale baselines and/or the Very Large Telescope (VLT) and Extremely Large Telescope (ELT) are equipped with recently-developed kilo-pixel sub-ns single-photon counters and used for intensity interferometry. We estimate that a team-up of the VLT and ELT could measure the orientation to $pm 1^{circ}$ at 2$sigma$ confidence in 24 hours of observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا