ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Control landscapes are almost always trap free: a geometric assessment

49   0   0.0 ( 0 )
 نشر من قبل Dmitry Zhdanov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dmitry V. Zhdanov




اسأل ChatGPT حول البحث

We analyze a recent claim that almost all closed, finite dimensional quantum systems have trap-free (i.e., free from local optima) landscapes (B. Russell et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors in the proof which compromise the authors conclusion. Interested readers are highly encouraged to take a look at the rebuttal (see Ref. [1]) of this comment published by the authors of the criticized work. This rebuttal is a showcase of the way the erroneous and misleading statements under discussion will be wrapped up and injected in their future works, such as R. L. Kosut et.al, arXiv:1810.04362 [quant-ph] (2018).

قيم البحث

اقرأ أيضاً

A proof that almost all quantum systems have trap free (that is, free from local optima) landscapes is presented for a large and physically general class of quantum system. This result offers an explanation for why gradient methods succeed so frequen tly in quantum control in both theory and practice. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator of closed finite dimension systems. This type of control field has been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause a control optimization progress to halt and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity axiom of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This novel condition is shown to be sufficient for a quantum systems landscape to be trap free. The control landscape for a quantum system is shown to be trap free for all but a null set of Hamiltonians using a novel geometric technique based on the parametric transversality theorem. Numerical evidence confirming this is also presented. This result is the analogue of the work of Altifini, wherein it is shown that controllability holds for all but a null set of quantum systems in the dipole approximation. The presented results indicate that by-and-large limited control resources are the most physically relevant source of landscape traps.
We present a comprehensive analysis of the landscape for full quantum-quantum control associated with the expectation value of an arbitrary observable of one quantum system controlled by another quantum system. It is shown that such full quantum-quan tum control landscapes are convex, and hence devoid of local suboptima and saddle points that may exist in landscapes for quantum systems controlled by time-dependent classical fields. There is no controllability requirement for the full quantum-quantum landscape to be trap-free, although the forms of Hamiltonians, the flexibility in choosing initial state of the controller, as well as the control duration, can infulence the reachable optimal value on the landscape. All level sets of the full quantum-quantum landscape are connected convex sets. Finally, we show that the optimal solution of the full quantum-quantum control landscape can be readily determined numerically, which is demonstrated using the Jaynes-Cummings model depicting a two-level atom interacting with a quantized radiation field.
163 - Jay Bartroff , Gary Lorden , 2021
We present an efficient method of calculating exact confidence intervals for the hypergeometric parameter. The method inverts minimum-width acceptance intervals after shifting them to make their endpoints nondecreasing while preserving their level. T he resulting set of confidence intervals achieves minimum possible average width, and even in comparison with confidence sets not required to be intervals it attains the minimum possible cardinality most of the time, and always within 1. The method compares favorably with existing methods not only in the size of the intervals but also in the time required to compute them. The available R package hyperMCI implements the proposed method.
We consider dynamical decoupling schemes in which the qubit is continuously manipulated by a control field at all times. Building on the theory of the Uhrig Dynamical Decoupling sequence (UDD) and its connections to Chebyshev polynomials, we derive a method of always-on control by expressing the UDD control field as a Fourier series. We then truncate this series and numerically optimize the series coefficients for decoupling, constructing the CAFE (Chebyshev and Fourier Expansion) sequence. This approach generates a bounded, continuous control field. We simulate the decoupling effectiveness of our sequence vs. a continuous version of UDD for a qubit coupled to fully-quantum and semi-classical dephasing baths and find comparable performance. We derive filter functions for continuous-control decoupling sequences, and we assess how robust such sequences are to noise on control fields. The methods we employ provide a variety of tools to analyze continuous-control dynamical decoupling sequences.
Transient gradual typing imposes run-time type tests that typically cause a linear slowdown in programs performance. This performance impact discourages the use of type annotations because adding types to a program makes the program slower. A virtual machine can employ standard just-in-time optimizations to reduce the overhead of transient checks to near zero. These optimizations can give gradually-typed languages performance comparable to state-of-the-art dynamic languages, so programmers can add types to their code without affecting their programs performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا