ﻻ يوجد ملخص باللغة العربية
The dependence of Hubble parameter on redshift can be determined directly from the dipole of luminosity distance to Supernovae Ia. We investigate the possibility of using the data on dipole of the luminosity distance obtained from the Supernovae Ia compilations SDSS, Union2.1, JLA and Pantheon to distinguish the dark energy models.
A non-minimal coupling between the dark matter and dark energy components may offer a way of solving the so-called coincidence problem. In this paper we propose a low-$z$ test for such hypothesis using measurements of the gas mass fraction $f_{rm{gas
This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established pro
Globular clusters are among the first objects used to establish the distance scale of the Universe. In the 1970-ies it has been recognized that the differential magnitude distribution of old globular clusters is very similar in different galaxies pre
Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational $H(z)$ data (OHD), cosmic microwave background (CMB) shift parameter and the secular Sandage-Loeb (SL) test. We find that the inclusion of
Current observational evidence does not yet exclude the possibility that dark energy could be in the form of phantom energy. A universe consisting of a phantom constituent will be driven toward a drastic end known as the `Big Rip singularity where al