ترغب بنشر مسار تعليمي؟ اضغط هنا

Image Chat: Engaging Grounded Conversations

171   0   0.0 ( 0 )
 نشر من قبل Kurt Shuster
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To achieve the long-term goal of machines being able to engage humans in conversation, our models should captivate the interest of their speaking partners. Communication grounded in images, whereby a dialogue is conducted based on a given photo, is a setup naturally appealing to humans (Hu et al., 2014). In this work we study large-scale architectures and datasets for this goal. We test a set of neural architectures using state-of-the-art image and text representations, considering various ways to fuse the components. To test such models, we collect a dataset of grounded human-human conversations, where speakers are asked to play roles given a provided emotional mood or style, as the use of such traits is also a key factor in engagingness (Guo et al., 2019). Our dataset, Image-Chat, consists of 202k dialogues over 202k images using 215 possible style traits. Automatic metrics and human evaluations of engagingness show the efficacy of our approach; in particular, we obtain state-of-the-art performance on the existing IGC task, and our best performing model is almost on par with humans on the Image-Chat test set (preferred 47.7% of the time).



قيم البحث

اقرأ أيضاً

Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do no t exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.
Human-like chit-chat conversation requires agents to generate responses that are fluent, engaging and consistent. We propose Sketch-Fill-A-R, a framework that uses a persona-memory to generate chit-chat responses in three phases. First, it generates dynamic sketch responses with open slots. Second, it generates candidate responses by filling slots with parts of its stored persona traits. Lastly, it ranks and selects the final response via a language model score. Sketch-Fill-A-R outperforms a state-of-the-art baseline both quantitatively (10-point lower perplexity) and qualitatively (preferred by 55% heads-up in single-turn and 20% higher in consistency in multi-turn user studies) on the Persona-Chat dataset. Finally, we extensively analyze Sketch-Fill-A-Rs responses and human feedback, and show it is more consistent and engaging by using more relevant responses and questions.
As conversational agents become integral parts of many aspects of our lives, current approaches are reaching bottlenecks of performance that require increasing amounts of data or increasingly powerful models. It is also becoming clear that such agent s are here to stay and accompany us for long periods of time. If we are, therefore, to design agents that can deeply understand our world and evolve with it, we need to take a step back and revisit the trade-offs we have made in the current state of the art models. This paper argues that a) we need to shift from slot filling into a more realistic conversation paradigm; and b) that, to realize that paradigm, we need models that are able to handle concrete and abstract entities as well as evolving relations between them.
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., a man playing a guitar). While such tasks are useful to verify that a machine understands the content of an image, they are not engaging to humans as captions. With this in mind we define a new task, Personality-Captions, where the goal is to be as engaging to humans as possible by incorporating controllable style and personality traits. We collect and release a large dataset of 201,858 of such captions conditioned over 215 possible traits. We build models that combine existing work from (i) sentence representations (Mazare et al., 2018) with Transformers trained on 1.7 billion dialogue examples; and (ii) image representations (Mahajan et al., 2018) with ResNets trained on 3.5 billion social media images. We obtain state-of-the-art performance on Flickr30k and COCO, and strong performance on our new task. Finally, online evaluations validate that our task and models are engaging to humans, with our best model close to human performance.
We introduce dodecaDialogue: a set of 12 tasks that measures if a conversational agent can communicate engagingly with personality and empathy, ask questions, answer questions by utilizing knowledge resources, discuss topics and situations, and perce ive and converse about images. By multi-tasking on such a broad large-scale set of data, we hope to both move towards and measure progress in producing a single unified agent that can perceive, reason and converse with humans in an open-domain setting. We show that such multi-tasking improves over a BERT pre-trained baseline, largely due to multi-tasking with very large dialogue datasets in a similar domain, and that the multi-tasking in general provides gains to both text and image-based tasks using several metrics in both the fine-tune and task transfer settings. We obtain state-of-the-art results on many of the tasks, providing a strong baseline for this challenge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا