ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Chandra View of A Candidate Parsec-Scale Jet from the Galactic Center Super-massive Black Hole

310   0   0.0 ( 0 )
 نشر من قبل Zhenlin Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the linear X-ray filament, G359.944-0.052, previously identified as a likely X-ray counterpart of a parsec-scale jet from the Galactic Center super-massive black hole (SMBH), Sagittarius A* (Sgr A*), using a total of ~5.6 Ms ultra-deep Chandra observations taken from September 1999 to July 2017. This unprecedented dataset enables us to examine flux and spectral variations that might be related to intrinsic properties of the weakly accreting SMBH. We find no flux or spectral variation in G359.944-0.052 after the G2 periapsis passage around early 2014, however, a moderate flux increase of ~2 sigma significance might be associated with the periapsis passage of G1 in early 2001. The filament exhibits an unusually hard spectrum (photon-index < 1) in its portion closest to Sgr A* (i.e., near-side) and a significant spectral softening in the more distant portion, which can be interpreted as synchrotron cooling of the relativistic electrons moving along the jet path. In particular, the hard spectrum of the near-side suggests a piling up of quasi-monoenergetic electrons caused by rapid radiative cooling. The spectral and temporal properties of G359.944-0.052 strengthen the case of it being the X-ray counterpart of a jet launched by Sgr A*.



قيم البحث

اقرأ أيضاً

Dual/binary Supermassive Black Hole (SMBH) systems are the inevitable consequence of the current Lambda Cold Dark Matter cosmological paradigm. In this context, we discuss here the properties of MCG+11-11-032, a local (z=0.0362) Seyfert 2 galaxy. Thi s source was proposed as a dual AGN candidate on the basis of the presence of double-peaked [OIII] emission lines in its optical spectrum. MCG+11-11-032 is also an X-ray variable source and was observed several times by the Swift X-ray Telescope (XRT) on time scales from days to years. In this work, we analyze the SDSS-DR13 spectrum and find evidence for double-peaked profiles in all the strongest narrow emission lines. We also study the XRT light curve and unveil the presence of an alternating behavior of the intrinsic 0.3-10 keV flux, while the 123-month Swift BAT light curve supports the presence of almost regular peaks and dips almost every 25 months. In addition, the XRT spectrum suggests for the presence of two narrow emission lines with rest-frame energies of E~6.16 keV and E~6.56 keV. Although by considering only the optical emission lines, different physical mechanisms may be invoked to explain the kinematical properties, the X-ray results are most naturally explained by the presence of a binary SMBH in the center of this source. In particular, we evidence a remarkable agreement between the putative SMBH pair orbital velocity derived from the BAT light curve and the velocity offset derived by the rest-frame Delta_E between the two X-ray line peaks in the XRT spectrum (i.e. Delta_v~0.06c).
The compact radio source Sgr A* is coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3 and report a faint continuous linear structure centered on Sgr A* with a PA~60 degrees. The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, ~75 from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10^-6 solar mass per year. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2 hole, the minicavity, characterized by disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is ~1.2x10^{41} erg/s, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe Kalpha line emission from the inner 100pc of the Galaxy.
We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate sub-parsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey (CRTS) based on apparent periodicity in their opt ical light curves. Simulations predict close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-$alpha$ line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini-disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power law models, with the rest frame 2-10 keV photon indices, $Gamma$, and the X-ray-to-optical power slopes, $alpha_{rm OX}$, indistinguishable from the larger quasar population. This may indicate that these seven quasars are not truly sub-parsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at higher energies than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations.
208 - Todd A. Boroson 2009
We identify SDSS J153636.22+044127.0, a QSO discovered in the Sloan Digital Sky Survey, as a promising candidate for a binary black hole system. This QSO has two broad-line emission systems separated by 3500 km/sec. The redder system at z=0.3889 also has a typical set of narrow forbidden lines. The bluer system (z=0.3727) shows only broad Balmer lines and UV Fe II emission, making it highly unusual in its lack of narrow lines. A third system, which includes only unresolved absorption lines, is seen at a redshift, z=0.3878, intermediate between the two emission-line systems. While the observational signatures of binary nuclear black holes remain unclear, J1536+0441 is unique among all QSOs known in having two broad-line regions, indicative of two separate black holes presently accreting gas. The interpretation of this as a bound binary system of two black holes having masses of 10^8.9 and 10^7.3 solar masses, yields a separation of ~ 0.1 parsec and an orbital period of ~100 years. The separation implies that the two black holes are orbiting within a single narrow-line region, consistent with the characteristics of the spectrum. This object was identified as an extreme outlier of a Karhunen-Loeve Transform of 17,500 z < 0.7 QSO spectra from the SDSS. The probability of the spectrum resulting from a chance superposition of two QSOs with similar redshifts is estimated at 2X10^-7, leading to the expectation of 0.003 such objects in the sample studied; however, even in this case, the spectrum of the lower redshift QSO remains highly unusual.
Aims: A strong, hard X-ray flare was discovered (IGR J12580+0134) by INTEGRAL in 2011, and is associated to NGC 4845, a Seyfert 2 galaxy never detected at high-energy previously. To understand what happened we observed this event in the X-ray band on several occasions. Methods: Follow-up observations with XMM-Newton, Swift, and MAXI are presented together with the INTEGRAL data. Long and short term variability are analysed and the event wide band spectral shape modelled. Results: The spectrum of the source can be described with an absorbed (N_H ~ 7x10^22 cm^{-2}) power law (Gamma simeq 2.2), characteristic of an accreting source, plus a soft X-ray excess, likely to be of diffuse nature. The hard X-ray flux increased to maximum in a few weeks and decreased over a year, with the evolution expected for a tidal disruption event. The fast variations observed near the flare maximum allowed us to estimate the mass of the central black hole in NGC 4845 as ~ 3x10^5 Msun. The observed flare corresponds to the disruption of about 10% of an object with a mass of 14-30 Jupiter. The hard X-ray emission should come from a corona forming around the accretion flow close to the black hole. This is the first tidal event where such a corona has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا