ترغب بنشر مسار تعليمي؟ اضغط هنا

The Holdout Randomization Test for Feature Selection in Black Box Models

65   0   0.0 ( 0 )
 نشر من قبل Wesley Tansey
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the holdout randomization test (HRT), an approach to feature selection using black box predictive models. The HRT is a specialized version of the conditional randomization test (CRT; Candes et al., 2018) that uses data splitting for feasible computation. The HRT works with any predictive model and produces a valid $p$-value for each feature. To make the HRT more practical, we propose a set of extensions to maximize power and speed up computation. In simulations, these extensions lead to greater power than a competing knockoffs-based approach, without sacrificing control of the error rate. We apply the HRT to two case studies from the scientific literature where heuristics were originally used to select important features for predictive models. The results illustrate how such heuristics can be misleading relative to principled methods like the HRT. Code is available at https://github.com/tansey/hrt.



قيم البحث

اقرأ أيضاً

In recent years, a large amount of model-agnostic methods to improve the transparency, trustability and interpretability of machine learning models have been developed. We introduce local feature importance as a local version of a recent model-agnost ic global feature importance method. Based on local feature importance, we propose two visual tools: partial importance (PI) and individual conditional importance (ICI) plots which visualize how changes in a feature affect the model performance on average, as well as for individual observations. Our proposed methods are related to partial dependence (PD) and individual conditional expectation (ICE) plots, but visualize the expected (conditional) feature importance instead of the expected (conditional) prediction. Furthermore, we show that averaging ICI curves across observations yields a PI curve, and integrating the PI curve with respect to the distribution of the considered feature results in the global feature importance. Another contribution of our paper is the Shapley feature importance, which fairly distributes the overall performance of a model among the features according to the marginal contributions and which can be used to compare the feature importance across different models.
The aim of this paper is to present a mixture composite regression model for claim severity modelling. Claim severity modelling poses several challenges such as multimodality, heavy-tailedness and systematic effects in data. We tackle this modelling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims, and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us for selecting the explanatory variables which significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel Generalized Expectation-Maximization algorithm. We exemplify our approach on real motor insurance data set.
Mixtures-of-Experts (MoE) are conditional mixture models that have shown their performance in modeling heterogeneity in data in many statistical learning approaches for prediction, including regression and classification, as well as for clustering. T heir estimation in high-dimensional problems is still however challenging. We consider the problem of parameter estimation and feature selection in MoE models with different generalized linear experts models, and propose a regularized maximum likelihood estimation that efficiently encourages sparse solutions for heterogeneous data with high-dimensional predictors. The developed proximal-Newton EM algorithm includes proximal Newton-type procedures to update the model parameter by monotonically maximizing the objective function and allows to perform efficient estimation and feature selection. An experimental study shows the good performance of the algorithms in terms of recovering the actual sparse solutions, parameter estimation, and clustering of heterogeneous regression data, compared to the main state-of-the art competitors.
171 - Giona Casiraghi 2021
The complexity underlying real-world systems implies that standard statistical hypothesis testing methods may not be adequate for these peculiar applications. Specifically, we show that the likelihood-ratio tests null-distribution needs to be modifie d to accommodate the complexity found in multi-edge network data. When working with independent observations, the p-values of likelihood-ratio tests are approximated using a $chi^2$ distribution. However, such an approximation should not be used when dealing with multi-edge network data. This type of data is characterized by multiple correlations and competitions that make the standard approximation unsuitable. We provide a solution to the problem by providing a better approximation of the likelihood-ratio test null-distribution through a Beta distribution. Finally, we empirically show that even for a small multi-edge network, the standard $chi^2$ approximation provides erroneous results, while the proposed Beta approximation yields the correct p-value estimation.
High-dimensional feature selection is a central problem in a variety of application domains such as machine learning, image analysis, and genomics. In this paper, we propose graph-based tests as a useful basis for feature selection. We describe an al gorithm for selecting informative features in high-dimensional data, where each observation comes from one of $K$ different distributions. Our algorithm can be applied in a completely nonparametric setup without any distributional assumptions on the data, and it aims at outputting those features in the data, that contribute the most to the overall distributional variation. At the heart of our method is the recursive application of distribution-free graph-based tests on subsets of the feature set, located at different depths of a hierarchical clustering tree constructed from the data. Our algorithm recovers all truly contributing features with high probability, while ensuring optimal control on false-discovery. Finally, we show the superior performance of our method over other existing ones through synthetic data, and also demonstrate the utility of the method on a real-life dataset from the domain of climate change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا