ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting fermions in an expanding spacetime

67   0   0.0 ( 0 )
 نشر من قبل Jonas B. De Araujo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the effect of quantum electrodynamics on the correlations between Dirac field modes corresponding electron-positron pairs of opposite momenta generated by expansion of an asymptotically flat Friedmann-Robertson-Walker (FRW) universe. The mutual information of out-going electron-positron pairs is evaluated to leading order in the coupling strength and compared with the free case. It is shown a decrease in the mutual information between the electron and positron. In addition, it is found that the change in the electron-positron mutual information depends on how the momentum is distributed between the positron and photon modes.


قيم البحث

اقرأ أيضاً

We evaluate self-interaction effects on the quantum correlations of field modes of opposite momenta for scalar $lambda phi^4$ theory in a two-dimensional asymptotically flat Robertson-Walker spacetime. Such correlations are encoded both in the von-Ne umann entropy defined through the reduced density matrix in one of the modes and in the covariance expressed in terms of the expectation value of the number operators for each mode in the evolved state. The entanglement between field modes carries information about the underlying spacetime evolution.
83 - Chanyong Park 2020
In expanding universes, the entanglement entropy must be time-dependent because the background geometry changes with time. For understanding time evolution of quantum correlations, we take into account two distinct holographic models, the dS boundary model and the braneworld model. In this work, we focus on two-dimensional expanding universes for analytic calculation and comparison. Although two holographic models realize expanding universes in totally different ways, we show that they result in the qualitatively same time-dependence for eternal inflation. We further investigate the time-dependent correlations in the radiation-dominated era of the braneworld model. Intriguingly, the holographic result reveals that a thermal system in the expanding universe is {it dethermalized} after a critical time characterized by the subsystem size.
We consider the effect of an expanding plasma on probe matter by determining time-dependent D7 embeddings in the holographic dual of an expanding viscous plasma. We calculate the chiral condensate and meson spectra including contributions of viscosit y. The chiral condensate essentially confirms the expectation from the static black hole. For the meson spectra we propose a scheme that is in agreement with the adiabatic approximation. New contributions arise for the vector mesons at the order of the viscosity terms.
We study the evolution of the two scalar fields entangled via a mutual interaction in an expanding spacetime. We compute the logarithmic negativity to leading order in perturbation theory and show that for lowest order in the coupling constants, the mutual interaction will give rise to the survival of the quantum correlations in the limit of the smooth expansion. The results suggest that interacting fields can codify more information about the underlying expansion spacetime and lead to interesting observable effects.
183 - E. Farhi , N. Graham , A. H. Guth 2008
We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy, but at a rate that is exponentially small when the expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial conditions will cool to a final state where a significant fraction of the energy of the universe -- on the order of 50% -- is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have cosmological consequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا