ﻻ يوجد ملخص باللغة العربية
Very precise data on elastic proton-proton scattering at $sqrt{s}=7$, $8$ and $13$ TeV have been obtained by the TOTEM group at LHC in the near-forward region (momentum transfers down to $|t| = 6 times 10^{-4} {rm GeV}^2$ at $sqrt{s}=8$ TeV and to $|t| = 8 times 10^{-4} {rm GeV}^2$ at $sqrt{s}=13$ TeV). The Coulomb-nuclear interference has been measured with sufficient accuracy for TOTEM to establish the falloff of the $rho$ parameter with increasing energy. The predictions from a previously studied model are shown to be in good agreement with the data and thus allow us to draw rather firm conclusions about the structure of the near-forward nuclear amplitude. We point out that due to a zero in the real part of the nuclear amplitude occurring at a very small momentum transfer--that can migrate into the Coulomb-nuclear interference (CNI) region at higher energies--much care is needed in extracting the numerical value of $rho$ for such energies. Thus, the true value of $rho$ would be higher than the TOTEM value for $rho$ found under the hypothesis that the real part of the elastic nuclear amplitude is devoid of such a zero in the CNI region.
We revisit a discussion on the impact-parameter dependence of proton-proton elastic scattering amplitude with improved uncertainty calculation. This analysis allows to reveal the asymptotic properties of hadron interactions. New data indicates that t
The recent data by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ at 13 TeV, have shown agreement with a leading Odderon contribution at the highest energies, as demonstrated in the very recent analysis by Martynov and Nicolescu (MN). In order to
We show that a Z with suppressed couplings to the electron compared to the Z-boson, with couplings to the b-quark, and with a mass close to the mass of the Z-boson, provides an excellent fit to forward-backward asymmetry of the b-quark and R_b measur
Recent data from LHC13 by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ have indicated disagreement with all the Pomeron model predictions by the COMPETE Collaboration (2002). On the other hand, as recently demonstrated by Martynov and Nicolescu
We present the new CTEQ-TEA global analysis of quantum chromodynamics (QCD). In this analysis, parton distribution functions (PDFs) of the nucleon are determined within the Hessian method at the next-to-next-to leading order (NNLO) in perturbative QC