ﻻ يوجد ملخص باللغة العربية
We perform a suite of 3D radiation hydrodynamics simulations of photoevaporation of molecular gas clumps illuminated by external massive stars. We study the fate of solar-mass clumps and derive their lifetimes with varying the gas metallicity over a range of $10^{-3} ,Z_odot leq Z leq Z_odot $. Our simulations incorporate radiation transfer of far ultraviolet (FUV) and extreme ultraviolet (EUV) photons, and follow atomic/molecular line cooling and dust-gas collisional cooling. Nonequilibrium chemistry is coupled with the radiative transfer and hydrodynamics in a self-consistent manner. We show that radiation-driven shocks compress gas clumps to have a volume that is set by the pressure-equilibrium with the hot ambient gas. Radiative cooling enables metal-rich clumps to condense and to have small surface areas, where photoevaporative flows are launched. For our fiducial set-up with an O-type star at a distance of 0.1 parsec, the resulting photoevaporation rate is as small as $sim 10^{-5} M_{odot}/{rm yr}$ for metal-rich clumps, but is larger for metal-poor clumps that have larger surface areas. The clumps are continuously accelerated away from the radiation source by the so-called rocket effect, and can travel over $sim$1 parsec within the lifetime. We also study photoevaporation of clumps in a photo-dissociation region. Photoelectric heating is inefficient for metal-poor clumps that contain a smaller amount of grains, and thus they survive for over $10^5$ years. We conclude that the gas metallicity strongly affects the clump lifetime and thus determines the strength of feedback from massive stars in star-forming regions.
We study the photoevaporation of Jeans-unstable molecular clumps by isotropic FUV (6 eV $< {rm h} u$ < 13.6 eV) radiation, through 3D radiative transfer hydrodynamical simulations implementing a non-equilibrium chemical network that includes the form
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified,
Red clump (RC) stars are widely used as an excellent standard candle. To make them even better, it is important to know the dependence of their absolute magnitudes on age and metallicity. We observed star clusters in the Large Magellanic Cloud to fil
We report a new analysis protocol for HCN hyperfine data, based on the PYSPECKIT package, and results of using this new protocol to analyse a sample area of seven massive molecular clumps from the Census of High- and Medium-mass Protostars (CHaMP) su
Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes. We perform a comparative study of the envelope properties of massive stars at different metallicities, with