ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of the two populations of blue stragglers in M30

60   0   0.0 ( 0 )
 نشر من قبل Simon Portegies Zwart
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the position of the two populations of blue stragglers in the globular cluster M30 in the Hertzsprung-Russell diagram. Both populations of blue stragglers are brighter than the clusters turn-off, but one population (the blue blue-stragglers) align along the zero-age main-sequence whereas the (red) population is elevated in brightness (or colour) by $sim 0.75$ mag. Based on stellar evolution and merger simulations we argue that the red population, which composes about 40% of the blue stragglers in M 30, is formed at a constant rate of $sim 2.8$ blue stragglers per Gyr over the last $sim 10$ Gyr. The blue population is formed in a burst that started $sim 3.2$ Gyr ago at a peak rate of $30$ blue stragglers per Gyr$^{-1}$ with an e-folding time scale of $0.93$ Gyr. We speculate that the burst resulted from the core collapse of the cluster at an age of about 9.8 Gyr, whereas the constantly formed population is the result of mass transfer and mergers through binary evolution. In that case about half the binaries in the cluster effectively result in a blue straggler.

قيم البحث

اقرأ أيضاً

We have constructed the Spectral Energy Distributions (SEDs) of a sample of Blue Straggler Stars (BSSs) in the core of the globular cluster 47 Tucanae, taking advantage of the large set of high resolution images, ranging from the ultraviolet to the n ear infrared, obtained with the ACS/HRC camera of the Hubble Space Telescope. Our final BSS sample consists of 22 objects, spanning the whole color and magnitude extension of the BSS sequence in 47 Tucanae. We fitted the BSS broadband SEDs with models to derive temperature, surface gravity, radius, luminosity and mass. We show that BSSs indeed define a mass sequence, where the mass increases for increasing luminosity. Interestingly, the BSS masses estimates from the SED fitting turn out to be comparable to those derived from the projection of the stellar position in the color-magnitude diagram onto standard star evolutionary tracks. We compare our results with previous, direct mass estimates of a few BSSs in 47 Tucanae. We also find a couple of supermassive BSS candidates, i.e., BSSs with a mass larger than twice the turn-off mass, the formation of which must have involved more than two progenitors.
It has become clear in recent years that globular clusters are not simple stellar populations, but may host chemically distinct sub-populations, typically with an enhanced helium abundance. These helium-rich populations can make up a substantial frac tion of all cluster stars. One of the proposed formation channels for blue straggler stars is the physical collision and merger of two stars. In the context of multiple populations, collisions between stars with different helium abundances should occur and contribute to the observed blue straggler population. This will affect the predicted blue straggler colour and luminosity function. We quantify this effect by calculating models of mergers resulting from collisions between stars with different helium abundances and using these models to model a merger population. We then compare these results to four observed clusters, NGC 1851, NGC 2808, NGC 5634 and NGC 6093. As in previous studies our models deviate from the observations, particularly in the colour distributions. However, our results are consistent with observations of multiple populations in these clusters. In NGC 2808, our best fitting models include normal and helium enhanced populations, in agreement with helium enhancement inferred in this cluster. The other three clusters show better agreement with models that do not include helium enhancement. We discuss future prospects to improve the modelling of blue straggler populations and the role that the models we present here can play in such a study.
We propose a formation mechanism for twin blue stragglers (BSs) in compact binaries that involves mass transfer from an evolved outer tertiary companion on to the inner binary via a circumbinary disk. We apply this scenario to the observed double BS system Binary 7782 in the old open cluster NGC 188, and show that its observed properties are naturally reproduced within the context of the proposed model. We predict the following properties for twin BSs: (1) For the outer tertiary orbit, the initial orbital period should lie between 220 days $lesssim$ P$_{rm out}$ $lesssim$ 1100 days, assuming initial masses for the inner binary components of $m_{rm 1} = 1.1$ M$_{odot}$ and $m_{rm 2} =$ 0.9 M$_{odot}$ and an outer tertiary mass of $m_{rm 3} = 1.4$ M$_{odot}$. After Roche-lobe overflow, the outer star turns into a white dwarf (WD) of mass 0.43 to 0.54,MSun. There is a correlation between the mass of this WD and the outer orbital period: more massive WDs will be on wider orbits. (3) The rotational axes of both BSs will be aligned with each other and the orbital plane of the outer tertiary WD. (4) The BSs will have roughly equal masses, independent of their initial masses (since the lower mass star accretes the most). The dominant accretor should, therefore, be more enriched by the accreted material. Hence, one of the BSs will appear to be more enriched by either He, C and O or by s-process elements, if the donor started Roche lobe overflow on, respectively, the red giant or asymptotic giant branch. (5) Relative to old clusters, twin BSs in close binaries formed from the proposed mechanism should be more frequent in the Galactic field and open clusters with ages $lesssim$ 4-6 Gyr, since then the donor will have a radiative envelope. (6) The orbit of the binary BS will have a small semi-major axis (typically $aplt 0.3$,au) and be close to circular ($e aplt 0.2$).
We present dynamical status of the Galactic globular cluster NGC 6656 using spatial distribution of Blue Straggler Stars (BSSs). A combination of multi-wavelength high-resolution space and ground-based data are used to cover a large cluster region. W e determine the centre of gravity ($C_{grav}$) and construct the projected density profile of the cluster using the probable cluster members selected from HST and Gaia DR2 proper motion data sets. The projected density profile in the investigated region is nicely reproduced by a single mass King model, with core ($r_{c}$) and tidal ($r_{t}$) radius as $75^{primeprime}.2$ $pm$ $3^{primeprime}.1$ and $35^{prime}.6$ $pm$ $1^{prime}.1$ respectively. In total, 90 BSSs are identified on the basis of proper motion data in the region of radius $625^{primeprime}$. An average mass of the BSSs is determined as $1.06$ $pm$ $0.09$ $M_{odot}$ and with an age range of 0.5 to 7 Gyrs. The BSS radial distribution shows a bimodal trend, with a peak in the centre, a minimum at $r sim r_c$ and a rising tendency in the outer region. The BSS radial distribution shows a flat behaviour in the outermost region of the cluster. We also estimate $A^{+}_{rh}$ parameter as an alternative indicator of the dynamical status of the cluster and is found to be $0.038$ $pm$ $0.016$. Based on the radial distribution and $A^{+}_{rh}$ parameter, we conclude that NGC 6656 is an intermediate dynamical age cluster.
264 - F. R. Ferraro 2010
Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxys history. Blue stragglers are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently, the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M30. This globular cluster is thought to have undergone core collapse, during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences arise from the cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا