ترغب بنشر مسار تعليمي؟ اضغط هنا

H$_2$O abundances and cloud properties in ten hot giant exoplanets

107   0   0.0 ( 0 )
 نشر من قبل Arazi Pinhas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transmission spectroscopy of exoplanets has the potential to provide precise measurements of atmospheric chemical abundances, in particular of hot Jupiters whose large sizes and high temperatures make them conducive to such observations. To date, several transmission spectra of hot Jupiters have revealed low amplitude features of water vapour compared to expectations from cloud-free atmospheres of solar metallicity. The low spectral amplitudes in such atmospheres could either be due to the presence of aerosols that obscure part of the atmosphere or due to inherently low abundances of H$_2$O in the atmospheres. A recent survey of transmission spectra of ten hot Jupiters used empirical metrics to suggest atmospheres with a range of cloud/haze properties but with no evidence for H$_2$O depletion. Here, we conduct a detailed and homogeneous atmospheric retrieval analysis of the entire sample and report the H$_2$O abundances, cloud properties, terminator temperature profiles, and detection significances of the chemical species. Our present study finds that the majority of hot Jupiters have atmospheres consistent with sub-solar H$_2$O abundances at their day-night terminators. The best constrained abundances range from $mathrm{log(H_2O)}$ of $-5.04^{+0.46}_{-0.30}$ to $-3.16^{+0.66}_{-0.69}$, which compared to expectations from solar-abundance equilibrium chemistry correspond to $0.018^{+0.035}_{-0.009}times$ solar to $1.40^{+4.97}_{-1.11}times$ solar. Besides H$_2$O we report statistical constraints on other chemical species and cloud/haze properties, including cloud/haze coverage fractions which range from $0.18^{+0.26}_{-0.12}$ to $0.76^{+0.13}_{-0.15}$. The retrieved H$_2$O abundances suggest sub-solar oxygen and/or super-solar C/O ratios, and can provide important constraints on the formation and migration pathways of hot giant exoplanets.

قيم البحث

اقرأ أيضاً

Atmospheric compositions can provide powerful diagnostics of formation and migration histories of planetary systems. We investigate constraints on atmospheric abundances of H$_2$O, Na, and K, in a sample of transiting exoplanets using latest transmis sion spectra and new H$_2$ broadened opacities of Na and K. Our sample of 19 exoplanets spans from cool mini-Neptunes to hot Jupiters, with equilibrium temperatures between $sim$300 and 2700 K. Using homogeneous Bayesian retrievals we report atmospheric abundances of Na, K, and H$_2$O, and their detection significances, confirming 6 planets with strong Na detections, 6 with K, and 14 with H$_2$O. We find a mass-metallicity trend of increasing H$_2$O abundances with decreasing mass, spanning generally substellar values for gas giants and stellar/superstellar for Neptunes and mini-Neptunes. However, the overall trend in H$_2$O abundances, from mini-Neptunes to hot Jupiters, is significantly lower than the mass-metallicity relation for carbon in the solar system giant planets and similar predictions for exoplanets. On the other hand, the Na and K abundances for the gas giants are stellar or superstellar, consistent with each other, and generally consistent with the solar system metallicity trend. The H$_2$O abundances in hot gas giants are likely due to low oxygen abundances relative to other elements rather than low overall metallicities, and provide new constraints on their formation mechanisms. The differing trends in the abundances of species argue against the use of chemical equilibrium models with metallicity as one free parameter in atmospheric retrievals, as different elements can be differently enhanced.
Supersonic turbulence results in strong density fluctuations in the interstellar medium (ISM), which have a profound effect on the chemical structure. Particularly useful probes of the diffuse ISM are the ArH$^+$, OH$^+$, H$_2$O$^+$ molecular ions, w hich are highly sensitive to fluctuations in the density and the H$_2$ abundance. We use isothermal magnetohydrodynamic (MHD) simulations of various sonic Mach numbers, $mathcal{M}_s$, and density decorrelation scales, $y_{rm dec}$, to model the turbulent density field. We post-process the simulations with chemical models and obtain the probability density functions (PDFs) for the H$_2$, ArH$^+$, OH$^+$ and H$_2$O$^+$ abundances. We find that the PDF dispersions increases with increasing $mathcal{M}_s$ and $y_{rm dec}$, as the magnitude of the density fluctuations increases, and as they become more coherent. Turbulence also affects the median abundances: when $mathcal{M}_s$ and $y_{rm dec}$ are high, low-density regions with low H$_2$ abundance become prevalent, resulting in an enhancement of ArH$^+$ compared to OH$^+$ and H$_2$O$^+$. We compare our models with Herschel observations. The large scatter in the observed abundances, as well as the high observed ArH$^+$/OH$^+$ and ArH$^+$/H$_2$O$^+$ ratios are naturally reproduced by our supersonic $(mathcal{M}_s=4.5)$, large decorrelation scale $(y_{rm dec}=0.8)$ model, supporting a scenario of a large-scale turbulence driving. The abundances also depend on the UV intensity, CR ionization rate, and the cloud column density, and the observed scatter may be influenced by fluctuations in these parameters.
66 - F. Davoudi , A. Poro , E. Paki 2020
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by th e EXOFAST with the value at the NASA Exoplanet Archive (NEA) using the confidence interval method. According to the results obtained from this comparison, there is an acceptable match for the planets radius with NEA values. Also, based on the average value of 350 mm optics in this study, it shows that the results obtained using small telescopes can be very significant if there is appropriate observational skill to study more discovered planets.
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from July to September 2015, i.e., around perihelion (13 August 2015), with the high-resolution channel of the VIRTIS instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H$_2$O, CO$_2$, $^{13}$CO$_2$, OCS, and CH$_4$ detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated southern hemisphere, as revealed by H$_2$O and CO$_2$ raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed six days after perihelion. In the mean time, CO$_2$, CH$_4$, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32%, 0.47%, and 0.18%, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO$_2$ should be representative of the 67P nucleus original composition, and indicates that 67P is a CO$_2$-rich comet. Comparison with abundance ratios measured in the northern hemisphere shows that seasons play an important role in comet outgassing. The low CO$_2$/H$_2$O values measured above the illuminated northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا