ﻻ يوجد ملخص باللغة العربية
Transmission spectroscopy of exoplanets has the potential to provide precise measurements of atmospheric chemical abundances, in particular of hot Jupiters whose large sizes and high temperatures make them conducive to such observations. To date, several transmission spectra of hot Jupiters have revealed low amplitude features of water vapour compared to expectations from cloud-free atmospheres of solar metallicity. The low spectral amplitudes in such atmospheres could either be due to the presence of aerosols that obscure part of the atmosphere or due to inherently low abundances of H$_2$O in the atmospheres. A recent survey of transmission spectra of ten hot Jupiters used empirical metrics to suggest atmospheres with a range of cloud/haze properties but with no evidence for H$_2$O depletion. Here, we conduct a detailed and homogeneous atmospheric retrieval analysis of the entire sample and report the H$_2$O abundances, cloud properties, terminator temperature profiles, and detection significances of the chemical species. Our present study finds that the majority of hot Jupiters have atmospheres consistent with sub-solar H$_2$O abundances at their day-night terminators. The best constrained abundances range from $mathrm{log(H_2O)}$ of $-5.04^{+0.46}_{-0.30}$ to $-3.16^{+0.66}_{-0.69}$, which compared to expectations from solar-abundance equilibrium chemistry correspond to $0.018^{+0.035}_{-0.009}times$ solar to $1.40^{+4.97}_{-1.11}times$ solar. Besides H$_2$O we report statistical constraints on other chemical species and cloud/haze properties, including cloud/haze coverage fractions which range from $0.18^{+0.26}_{-0.12}$ to $0.76^{+0.13}_{-0.15}$. The retrieved H$_2$O abundances suggest sub-solar oxygen and/or super-solar C/O ratios, and can provide important constraints on the formation and migration pathways of hot giant exoplanets.
Atmospheric compositions can provide powerful diagnostics of formation and migration histories of planetary systems. We investigate constraints on atmospheric abundances of H$_2$O, Na, and K, in a sample of transiting exoplanets using latest transmis
Supersonic turbulence results in strong density fluctuations in the interstellar medium (ISM), which have a profound effect on the chemical structure. Particularly useful probes of the diffuse ISM are the ArH$^+$, OH$^+$, H$_2$O$^+$ molecular ions, w
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by th
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from July to September 2015, i.e., around perihelion (13 August 2015), with the high-resolution channel of the VIRTIS instrument onboard Rosetta. We present the analysis