ﻻ يوجد ملخص باللغة العربية
We present measurements of pure spin current absorption on lateral spin valves. By varying the width of the absorber we demonstrate that spin current absorption measurements enable to characterize efficiently the spin transport properties of ferromagnetic elements. The analytical model used to describe the measurement takes into account the polarization of the absorber. The analysis of the measurements allows thus determining the polarization and the spin diffusion length of a studied material independently, contrarily to most experiments based on lateral spin valves where those values are entangled. We report the spin transport parameters of some of the most important materials used in spinorbitronics (Co60Fe40, Ni81Fe19, Co, Pt, and Ta), at room and low (10 K) temperatures.
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed,
A high reproducibility in the performance of cobalt/copper and permalloy/copper lateral spin valves with transparent contacts is obtained by optimizing the interface quality and the purity of copper. This allows us to study comprehensively the spin i
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orient
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte
We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanism for longitudinal and transverse spins in lateral spin valves, which enables to elucidate intrinsic spin transport and relaxatio