ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Multipartite Quantum Entropies

104   0   0.0 ( 0 )
 نشر من قبل Christian Majenz
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Christian Majenz




اسأل ChatGPT حول البحث

The von Neumann entropy plays a vital role in quantum information theory. The von Neumann entropy determines, e.g., the capacities of quantum channels. Also, entropies of composite quantum systems are important for future quantum networks, and their characterization is related to the quantum marginal problem. Furthermore, they play a role in quantum thermodynamics. In this thesis the set of quantum entropies of multipartite quantum systems is studied. The problem of its characterization is not new -- however, progress has been sparse, indicating that the problem might be hard and that new methods might be needed. Here, a variety of different and complementary approaches are taken. First, I look at global properties. It is known that the von Neumann entropy region -- just like its classical counterpart -- forms a convex cone. I describe the symmetries of this cone and highlight geometric similarities and differences to the classical entropy cone. In a different approach, I utilize the local geometric properties of extremal rays of a cone. I show that quantum states whose entropy lies on such an extremal ray of the quantum entropy cone have a very simple structure. As the set of all quantum states is very complicated, I look at a simple subset called stabilizer states. I improve on previously known results by showing that under a technical condition on the local dimension, entropies of stabilizer states respect an additional class of information inequalities that is valid for random variables from linear codes. In a last approach I find a representation-theoretic formulation of the classical marginal problem simplifying the comparison with its quantum mechanical counterpart. This novel correspondence yields a simplified formulation of the group characterization of classical entropies (IEEE Trans. Inf. Theory, 48(7):1992-1995, 2002) in purely combinatorial terms.



قيم البحث

اقرأ أيضاً

We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
62 - Romain Duboscq 2017
This work is concerned with the minimization of quantum entropies under local constraints of density, current, and energy. The problem arises in the work of Degond and Ringhofer about the derivation of quantum hydrodynamical models from first princip les, and is an adaptation to the quantum setting of the moment closure strategy by entropy minimization encountered in kinetic equations. The main mathematical difficulty is the lack of compactness needed to recover the energy constraint. We circumvent this issue by a monotonicity argument involving energy, temperature and entropy, that is inspired by some thermodynamical considerations.
It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their rela tionship with earlier debates on hidden states in quantum mechanics. The overarching insight was that not only hidden Markov processes, but also quantum random walks are finitary processes. Since finitary processes enjoy nice asymptotic properties, this also encourages to further investigate the asymptotic properties of quantum random walks. Here, answers to all these questions are given. Quantum random walks, hidden Markov processes and finitary processes are put into a unifying model context. In this context, quantum random walks are seen to not only enjoy nice ergodic properties in general, but also intuitive quantum-style asymptotic properties. It is also pointed out how hidden states arising from our framework relate to hidden states in earlier, prominent treatments on topics such as the EPR paradoxon or Bells inequalities.
Quantum error mitigation (QEM) is a class of promising techniques capable of reducing the computational error of variational quantum algorithms tailored for current noisy intermediate-scale quantum computers. The recently proposed permutation-based m ethods are practically attractive, since they do not rely on any a priori information concerning the quantum channels. In this treatise, we propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases. In particular, we show that the proposed filter design algorithm always converge to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods in the presence of narrowband quantum noise, corresponding to large-depth, high-error-rate quantum circuits.
285 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti cal forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا