ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge polarization, local electroneutrality breakdown and eddy formation due to electroosmosis in varying-section channels

135   0   0.0 ( 0 )
 نشر من قبل Paolo Malgaretti Mr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the dynamics of an electrolyte embedded in a varying-section channel under the action of a constant external electrostatic field. By means of molecular dynamics simulations we determine the stationary density, charge and velocity profiles of the electrolyte. Our results show that when the Debye length is comparable to the width of the channel bottlenecks a concentration polarization along with two eddies sets inside the channel. Interestingly, upon increasing the external field, local electroneutrality breaks down and charge polarization sets leading to the onset of net dipolar field. This novel scenario, that cannot be captured by the standard approaches based on local electroneutrality, opens the route for the realization of novel micro and nano-fluidic devices.



قيم البحث

اقرأ أيضاً

We study the dynamics of neutral and charged rods embedded in varying-section channels. By means of systematic approximations, we derive the dependence of the local diffusion coefficient on both the geometry and charge of the rods. This microscopic i nsight allows us to provide predictions for the permeability of varying-section channels to rods with diverse lengths, aspect ratios and charge. Our analysis shows that the dynamics of charged rods is sensitive to the geometry of the channel and that their transport can be controlled by tuning both the shape of the confining walls and the charge of the rod. Interestingly, we find that the channel permeability does not depend monotonically on the charge of the rod. This opens the possibility of a novel mechanism to separate charged rods.
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho wever, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a visco-plastic fluid obtained from a kaolin-water dispersion, with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, like fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to segregate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the material properties and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a Lattice-Boltzmann Method, and the particles are explicitly represented using the Discrete Element Method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time-scale of particle settling with the one of particle recirculation, a non-dimensional number is defined, and is found to be effective in predicting the formation of a granular front.
Electrical conductivity is an inherent property of a hydrophobic porous media (HPM) and has critical applications. This research aims to provide a solution for predicting the electrical conductivity of nanoscale HPM with heterogeneous pore structure. Molecular dynamics (MD) simulations are compared with the modified Poisson-Boltzmann (MPB) model for understanding ionic charge density distributions in nanopores. The effective medium approximation (EMA) participates in calculating the effective conductance and conductivity of the nanoscale HPM. The results show that the surface charge density affects the ionic density profiles in the hydrophobic nanopores. As the pore size increases, the conductance increases. As the molarity of the aqueous electrolyte solution (AES) decreases, the conductance decreases. A phenomenon related to the conductance saturation occurred when the molarity of AES is very low. The effective conductance of an HPM increase as the coordination number increases. Finally, based on the calculated effective conductance and the heterogeneous pore structure parameters, the electrical conductivity of a nanoscale HPM is calculated.
Crescentic shape dunes, known as barchan dunes, are formed by the action of a fluid flow on a granular bed. These bedforms are common in many environments, existing under water or in air, and being formed from grains organized in different initial ar rangements. Although they are frequently found in nature and industry, details about their development are still to be understood. In a recent paper [C. A. Alvarez and E. M. Franklin, Phys. Rev. E 96, 062906 (2017)], we proposed a timescale for the development and equilibrium of single barchans based on the growth of their horns. In the present Letter, we report measurements of the growth of horns at the grain scale. In our experiments, conical heaps were placed in a closed conduit and individual grains were tracked as each heap, under the action of a water flow, evolved to a barchan dune. We identified the trajectories of the grains that migrated to the growing horns, and found that most of them came from upstream regions on the periphery of the initial heap, with an average displacement of the order of the heap size. In addition, we show that individual grains had transverse displacements by rolling and sliding that are not negligible, with many of them going around the heap. The mechanism of horns formation revealed by our experiments contrasts with the general picture that barchan horns form from the advance of the lateral dune flanks due to the scaling of migration velocity with the inverse of dune size. Our results change the way in which the growth of subaqueous barchan dunes is explained.
Shear thickening is a widespread phenomenon in suspension flow that, despite sustained study, is still the subject of much debate. The longstanding view that shear thickening is due to hydrodynamic clusters has been challenged by recent theory and si mulations suggesting that contact forces dominate, not only in discontinuous, but also in continuous shear thickening. Here, we settle this dispute using shear reversal experiments on micron-sized silica and latex colloidal particles to measure directly the hydrodynamic and contact force contributions to shear thickening. We find that contact forces dominate even continuous shear thickening. Computer simulations show that these forces most likely arise from frictional interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا