ﻻ يوجد ملخص باللغة العربية
Let $R$ be a commutative unital ring. Given a finitely-presented affine $R$-group $G$ acting on a finitely-presented $R$-scheme $X$ of finite type, we show that there is a prime $p_0$ so that for any $R$-algebra $k$ which is a field of characteristic $p > p_0$, the centralisers in $G_k$ of all subsets $U subseteq X(k)$ are smooth. We prove this using the Lefschetz principle together with careful application of Gr{o}bner basis techniques.
Let $G$ be a reductive algebraic group over an algebraically closed field and let $V$ be a quasi-projective $G$-variety. We prove that the set of points $vin V$ such that ${rm dim}(G_v)$ is minimal and $G_v$ is reductive is open. We also prove some r
Let $p$ be a prime. Let $R$ be a regular local ring of dimension $dge 2$ whose completion is isomorphic to $C(k)[[x_1,ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $hin C(k)[[x_1,ldots,x_d]]$ such that its
We prove an effective variant of the Kazhdan-Margulis theorem generalized to stationary actions of semisimple groups over local fields: the probability that the stabilizer of a random point admits a non-trivial intersection with a small $r$-neighborh
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can st
In this paper we study the generic, i.e., typical, behavior of finitely generated subgroups of hyperbolic groups and also the generic behavior of the word problem for amenable groups. We show that a random set of elements of a nonelementary word hype