ﻻ يوجد ملخص باللغة العربية
The construction of volumetric parametrizations for computational domains is a key step in the pipeline of isogeometric analysis. Here, we investigate a solution to this problem based on the mesh deformation approach. The desired domain is modeled as a deformed configuration of an initial simple geometry. Assuming that the parametrization of the initial domain is bijective and that it is possible to find a locally invertible displacement field, the method yields a bijective parametrization of the target domain. We compute the displacement field by solving the equations of nonlinear elasticity with the neo-Hookean material law, and we show an efficient variation of the incremental loading algorithm tuned specifically to this application. In order to construct the initial domain, we simplify the target domains boundary by means of an L2-projection onto a coarse basis and then apply the Coons patch approach. The proposed methodology is not restricted to a single patch scenario but can be utilized to construct multi-patch parametrizations with naturally looking boundaries between neighboring patches. We illustrate its performance and compare the result to other established parametrization approaches on a range of two-dimensional and three-dimensional examples.
This work is motivated by the difficulty in assembling the Galerkin matrix when solving Partial Differential Equations (PDEs) with Isogeometric Analysis (IGA) using B-splines of moderate-to-high polynomial degree. To mitigate this problem, we propose
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction
The goal of this paper is to develop a numerical algorithm that solves a two-dimensional elliptic partial differential equation in a polygonal domain using tensor methods and ideas from isogeometric analysis. The proposed algorithm is based on the Fi
The fast assembling of stiffness and mass matrices is a key issue in isogeometric analysis, particularly if the spline degree is increased. We present two algorithms based on the idea of sum factorization, one for matrix assembling and one for matrix
We propose a numerical method for the solution of electromagnetic problems on axisymmetric domains, based on a combination of a spectral Fourier approximation in the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial and a