ﻻ يوجد ملخص باللغة العربية
We examine the effects of SMBH feedback on the CGM using a cosmological hydrodynamic simulation citep[{sc Romulus25};][]{Tremmel2017} and a set of four zoom-in `genetically modified Milky Way-mass galaxies sampling different evolutionary paths. By tracing the distribution of metals in the circumgalactic medium (CGM), we show that ion{O}{6} is a sensitive indicator of supermassive black hole (SMBH) feedback. First, we calculate the column densities of ion{O}{6} in simulated Milky Way-mass galaxies and compare them with observations from the COS-Halos Survey. Our simulations show column densities of ion{O}{6} in the CGM consistent with those of COS-Halos star forming and quenched galaxies. These results contrast with those from previous simulation studies which typically underproduce CGM column densities of ion{O}{6}. We determine that a galaxys star formation history and assembly record have little effect on the amount of ion{O}{6} in its CGM. Instead, column densities of ion{O}{6} are closely tied to galaxy halo mass and BH growth history. The set of zoom-in, genetically modified Milky Way-mass galaxies indicates that the SMBH drives highly metal-enriched material out into its host galaxys halo which in turn elevates the column densities of ion{O}{6} in the CGM.
We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths
The circumgalactic medium (CGM) of galaxies serves as a record of the influences of outflows and accretion that drive the evolution of galaxies. Feedback from star formation drives outflows that carry mass and metals away from galaxies to the CGM, wh
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal
The cycling of baryons in and out of galaxies is what ultimately drives galaxy formation and evolution. The circumgalactic medium (CGM) represents the interface between the interstellar medium and the cosmic web, hence its properties are directly sha
The circumgalactic medium (CGM) encodes signatures of the galaxy-formation process, including the interaction of galactic outflows driven by stellar and supermassive black hole (SMBH) feedback with the gaseous halo. Moving beyond spherically symmetri