ﻻ يوجد ملخص باللغة العربية
We study $F$-functions in the context of field theories on $S^3$ using gauge-gravity duality, with the radius of $S^3$ playing the role of RG scale. We show that the on-shell action, evaluated over a set of holographic RG flow solutions, can be used to define good $F$-functions, which decrease monotonically along the RG flow from the UV to the IR for a wide range of examples. If the operator perturbing the UV CFT has dimension $Delta > 3/2$ these $F$-functions correspond to an appropriately renormalized free energy. If instead the perturbing operator has dimension $Delta < 3/2$ it is the quantum effective potential, i.e. the Legendre transform of the free energy, which gives rise to good $F$-functions. We check that these observations hold beyond holography for the case of a free fermion on $S^3$ ($Delta=2$) and the free boson on $S^3$ ($Delta=1$), resolving a long-standing problem regarding the non-monotonicity of the free energy for the free massive scalar. We also show that for a particular choice of entangling surface, we can define good $F$-functions from an entanglement entropy, which coincide with certain $F$-functions obtained from the on-shell action.
Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS$_d$, AdS$_d$, and $S^d$) are considered in the framework of Einstein-dilaton gravity in $d+1$ dimensions. A general dilaton potential is used and the flows are driven by a
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectu
We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitat
Boundary, defect, and interface RG flows, as exemplified by the famous Kondo model, play a significant role in the theory of quantum fields. We study in detail the holographic dual of a non-conformal supersymmetric impurity in the D1/D5 CFT. Its RG f
Axionic holographic RG flow solutions are studied in the context of general Einstein-Axion-Dilaton theories. A non-trivial axion profile is dual to the (non-perturbative) running of the $theta$-term for the corresponding instanton density operator. I