ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic Correlated Electronic Structure of Colossal Thermopower Marcasite FeSb$_2$

224   0   0.0 ( 0 )
 نشر من قبل Walber Hugo De Brito
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron antimonide (FeSb$_2$) is a mysterious material with peculiar colossal thermopower of about $-45$ mV/K at 10 K. However, a unified microscopic description of this phenomenon is far from being achieved. The understanding of the electronic structure in details is crucial in identifying the microscopic mechanism of FeSb$_2$ thermopower. Combining angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations we find that the spectrum of FeSb$_2$ consists of two bands near the Fermi energy: the nondispersive strongly renormalized $alpha$-band, and the hole-like $beta$-band that intersects the first one at $Gamma$ and Y points of the Brillouin zone. Our study reveals the presence of sizable correlations, predominantly among electrons derived from Fe-3d states, and considerable anisotropy in the electronic structure of FeSb$_2$. These key ingredients are of fundamental importance in the description of colossal thermopower in FeSb$_2$.



قيم البحث

اقرأ أيضاً

64 - C. C. Homes , Q. Du , C. Petrovic 2018
The iron antimonide FeSb$_2$ possesses an extraordinarily high thermoelectric power factor at low temperature, making it a leading candidate for cryogenic thermoelectric cooling devices. However, the origin of this unusual behavior is controversial, having been variously attributed to electronic correlations as well as the phonon-drag effect. The optical properties of a material provide information on both the electronic and vibrational properties. The optical conductivity reveals an anisotropic response at room temperature; the low-frequency optical conductivity decreases rapidly with temperature, signalling a metal-insulator transition. One-dimensional semiconducting behavior is observed along the $b$ axis at low temperature, in agreement with first-principle calculations. The infrared-active lattice vibrations are also symmetric and extremely narrow, indicating long phonon relaxation times and a lack of electron-phonon coupling. Surprisingly, there are more lattice modes along the $a$ axis than are predicted from group theory; several of these modes undergo significant changes below about 100 K, hinting at a weak structural distortion or phase transition. While the extremely narrow phonon line shapes favor the phonon-drag effect, the one-dimensional behavior of this system at low temperature may also contribute to the extraordinarily high thermopower observed in this material.
We identify the driving mechanism of the gigantic Seebeck coefficient in FeSb$_2$ as the phonon-drag effect associated with an in-gap density of states that we demonstrate to derive from excess iron. We accurately model electronic and thermoelectric transport coefficients and explain the so far ill-understood correlation of maxima and inflection points in different response functions. Our scenario has far-reaching consequences for attempts to harvest the spectacular powerfactor of FeSb$_2$.
233 - G. Kuhn , S. Mankovsky , H. Ebert 2012
The electronic structure and magnetic properties of CrSb$_2$ have been investigated by ab-initio calculations with an emphasis on the role of the magnetic structure for the ground state. The influence of correlation effects has been investigated by p erforming fixed spin moment (FSM) calculations showing their important role for the electronic and magnetic properties. The details of the electronic structure of CrSb$_2$ are analyzed by a comparison with those of FeSb$_2$. The results obtained contribute in particular to the understanding of the temperature dependence of transport and magnetic behavior observed experimentally.
We introduce a computational scheme for calculating the electronic structure of random alloys that includes electronic correlations within the framework of the combined density functional and dynamical mean-field theory. By making use of the particul arly simple parameterization of the electron Greens function within the linearized muffin-tin orbitals method, we show that it is possible to greatly simplify the embedding of the self-energy. This in turn facilitates the implementation of the coherent potential approximation, which is used to model the substitutional disorder. The computational technique is tested on the Cu-Pd binary alloy system, and for disordered Mn-Ni interchange in the half-metallic NiMnSb.
481 - D. Biswas , A. M. Ganose , R. Yano 2017
We have used angle resolved photoemission spectroscopy to investigate the band structure of ReS$_2$, a transition-metal dichalcogenide semiconductor with a distorted 1T crystal structure. We find a large number of narrow valence bands, which we attri bute to the combined influence of the structural distortion and spin-orbit coupling. We further image how this leads to a strong in-plane anisotropy of the electronic structure, with quasi-one-dimensional bands reflecting predominant hopping along zig-zag Re chains. We find that this does not persist up to the top of the valence band, where a more three-dimensional character is recovered with the fundamental band gap located away from the Brillouin zone centre along $k_z$. These experiments are in good agreement with our density-functional theory calculations, shedding new light on the bulk electronic structure of ReS$_2$, and how it can be expected to evolve when thinned to a single layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا