ﻻ يوجد ملخص باللغة العربية
Short-range antiferromagnetic correlations are known to open a spin gap in the repulsive Hubbard model on ladders with $M$ legs, when $M$ is even. We show that the spin gap originates from the formation of correlated pairs of electrons with opposite spin, captured by the hidden ordering of a spin-parity operator. Since both spin gap and parity vanish in the two-dimensional limit, we introduce the fractional generalization of spin parity and prove that it remains finite in the thermodynamic limit. Our results are based upon variational wave functions and Monte Carlo calculations: performing a finite size-scaling analysis with growing $M$, we show that the doping region where the parity is finite coincides with the range in which superconductivity is observed in two spatial dimensions. Our observations support the idea that superconductivity emerges out of spin gapped phases on ladders, driven by a spin-pairing mechanism, in which the ordering is conveniently captured by the finiteness of the fractional spin-parity operator.
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with
The repulsive one-dimensional Hubbard model with bond-charge interaction (HBC) in the superconducting regime is mapped onto the spin-1/2 XY model with transverse field. We calculate correlations and phase boundaries, realizing an excellent agreement
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are d