ﻻ يوجد ملخص باللغة العربية
We investigate a multirate time step approach applied to decoupled methods in fluid and structure interaction(FSI) computation, where two different time steps are used for fluid and structure respectively. For illustration, the multirate technique is tested by the decoupled beta-scheme. Numerical experiments show that the proposed approach is stable and retains the same order accuracy as the original single time step schemes, while with much less computational expense.
This work considers multirate generalized-structure additively partitioned Runge-Kutta (MrGARK) methods for solving stiff systems of ordinary differential equations (ODEs) with multiple time scales. These methods treat different partitions of the sys
This work focuses on the development of a new class of high-order accurate methods for multirate time integration of systems of ordinary differential equations. The proposed methods are based on a specific subset of explicit one-step exponential inte
This work focuses on the construction of a new class of fourth-order accurate methods for multirate time evolution of systems of ordinary differential equations. We base our work on the Recursive Flux Splitting Multirate (RFSMR) version of the Multir
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric mul
We present a novel formulation based on an immersed coupling of Isogeometric Analysis (IGA) and Peridynamics (PD) for the simulation of fluid-structure interaction (FSI) phenomena for air blast. We aim to develop a practical computational framework t