ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale

125   0   0.0 ( 0 )
 نشر من قبل Yuebing Zheng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks.

قيم البحث

اقرأ أيضاً

Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new cla ss of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence, in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, in particular, related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
The Internet of Things (IoT) and edge computing applications aim to support a variety of societal needs, including the global pandemic situation that the entire world is currently experiencing and responses to natural disasters. The need for real-t ime interactive applications such as immersive video conferencing, augmented/virtual reality, and autonomous vehicles, in education, healthcare, disaster recovery and other domains, has never been higher. At the same time, there have been recent technological breakthroughs in highly relevant fields such as artificial intelligence (AI)/machine learning (ML), advanced communication systems (5G and beyond), privacy-preserving computations, and hardware accelerators. 5G mobile communication networks increase communication capacity, reduce transmission latency and error, and save energy -- capabilities that are essential for new applications. The envisioned future 6G technology will integrate many more technologies, including for example visible light communication, to support groundbreaking applications, such as holographic communications and high precision manufacturing. Many of these applications require computations and analytics close to application end-points: that is, at the edge of the network, rather than in a centralized cloud. AI techniques applied at the edge have tremendous potential both to power new applications and to need more efficient operation of edge infrastructure. However, it is critical to understand where to deploy AI systems within complex ecosystems consisting of advanced applications and the specific real-time requirements towards AI systems.
Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment ar e not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patients face (Mean average precision (mAP)=0.94), recognize patients face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with A I systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا