ترغب بنشر مسار تعليمي؟ اضغط هنا

In-situ liquid SAXS studies on the early stage of calcium carbonate formation

150   0   0.0 ( 0 )
 نشر من قبل Andrea Testino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Calcium carbonate is a model system to investigate the mechanism of solid formation by precipitation from solutions, and it is often considered in the debated classical and non-classical nucleation mechanism. Despite the great scientific relevance of calcium carbonate in different areas of science, little is known about the early stage of its formation. We, therefore, designed contactless devices capable to provide informative investigations on the early stages of the precipitation pathway of calcium carbonate in supersaturated solutions using classical scattering methods such as Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) techniques. In particular, SAXS was exploited for investigating the size of entities formed from supersaturated solutions before the critical conditions for amorphous calcium carbonate (ACC) nucleation are attained. The saturation level was controlled by mixing four diluted solutions (i.e., NaOH, CaCl2, NaHCO3, H2O) at constant T and pH. The scattering data were collected on a liquid jet generated about 75 sec after the mixing point. The data were modeled using parametric statistical models providing insight about the size distribution of denser matter in the liquid jet. Theoretical implications on the early stage of solid formation pathway are inferred.

قيم البحث

اقرأ أيضاً

We report on a systematic study of the growth of epitaxial TiO2 films deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single crystals. By using in-situ reflection high energy electron diffraction, low energy electron diffraction, x -ray photoemission spectroscopy and scanning probe microscopy, we show that the stabilization of the anatase (001) phase is preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a thickness between 2 and 4 nm. The data demonstrate that the formation of this phase is related to the activation of long range Sr migration from the substrate to the film. The role of interface Gibbs energy minimization, as a driving force for Sr diffusion, is discussed. Our results enrich the phase diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient SrTiO phase.
Electrolytes as nanostructured materials are very attractive for batteries or other types of electronic devices. (PEO)8ZnCl2 polymer electrolytes and nanocomposites (PEO)8ZnCl2/TiO2 were prepared from PEO and ZnCl2 and with addition of TiO2 nanograin s. The influence of TiO2 nanograins was studied by small-angle X-ray scattering (SAXS) simultaneously recorded with wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) at the synchrotron ELETTRA. It was shown by previous impedance spectroscopy (IS) that the room temperature conductivity of nanocomposite polymer electrolyte increased more than two times above 65oC, relative to pure composites of PEO and salts. The SAXS/DSC measurements yielded insight into the temperature-dependent changes of the grains of the electrolyte as well as to differences due to different heating and cooling rates. The crystal structure and temperatures of melting and crystallization of the nanosize grains was revealed by the simultaneous WAXS measurements.
We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile partic les (precipitate) and bouncing particles (gas) coupled to the Navier-Stokes equation for the liquid. This theory successfully reproduces correct topology of the phase diagram and primary patterns observed in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]: static crystals and honeycombs and dynamic pulsating rings and rotating multi-petal vortices.
Surface-pressure isotherms, X-ray reflectivity and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C$_{61}$ (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likely ensuing ionic Cs-PCBM interaction decreases aggregation tendency of PCBM. This implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.
In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) surfaces. By a combined use of microRaman and x-ray photoelectron spectroscopies, and scanning tunneling microscopy and spectroscopy, we were able t o individuate a carbon precursor phase to graphene nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size regions these aggregates show a linear arrangement of atoms as well as the first signature of the hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer deposition times, when the graphene domains coalesce to form a single layer graphene film.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا