ﻻ يوجد ملخص باللغة العربية
Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings where there is a single, labeled, source and a single target domain. However, in many real-world settings one seeks to adapt to multiple, but somewhat similar, target domains. Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail to leverage shared information among multiple domains. In this work we propose an information theoretic approach for domain adaptation in the novel context of multiple target domains with unlabeled instances and one source domain with labeled instances. Our model aims to find a shared latent space common to all domains, while simultaneously accounting for the remaining private, domain-specific factors. Disentanglement of shared and private information is accomplished using a unified information-theoretic approach, which also serves to establish a stronger link between the latent representations and the observed data. The resulting model, accompanied by an efficient optimization algorithm, allows simultaneous adaptation from a single source to multiple target domains. We test our approach on three challenging publicly-available datasets, showing that it outperforms several popular domain adaptation methods.
Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data from the target domain w.r.t. labeled data from the source domain. While the single-target UDA scenario is well studied in
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy. However, it is not always feasible to obtain high-quality supervisory signals from users, especially for vision tasks. Unlike
Most domain adaptation methods focus on single-source-single-target adaptation setting. Multi-target domain adaptation is a powerful extension in which a single classifier is learned for multiple unlabeled target domains. To build a multi-target clas
Tractable models of human perception have proved to be challenging to build. Hand-designed models such as MS-SSIM remain popular predictors of human image quality judgements due to their simplicity and speed. Recent modern deep learning approaches ca
Recently unsupervised domain adaptation for the semantic segmentation task has become more and more popular due to high-cost of pixel-level annotation on real-world images. However, most domain adaptation methods are only restricted to single-source-