ﻻ يوجد ملخص باللغة العربية
Supermassive black holes can launch powerful jets which can be some of the most luminous multi-wavelength sources; decades after their discovery their physics and energetics are still poorly understood. The past decade has seen a dramatic improvement in the quality of available data, but despite this improvement the semi-analytical modelling of jets has advanced slowly: simple one-zone models are still the most commonly employed method of interpreting data, in particular for AGN jets. These models can roughly constrain the properties of jets but they cannot unambiguously couple their emission to the launching regions and internal dynamics, which can be probed with simulations. However, simulations are not easily comparable to observations because they cannot yet self-consistently predict spectra. We present an advanced semi-analytical model which accounts for the dynamics of the whole jet, starting from a simplified parametrization of Relativistic Magnetohydrodynamics in which the magnetic flux is converted into bulk kinetic energy. To benchmark the model we fit six quasisimultaneous, multi-wavelength spectral energy distributions of the BL Lac PKS 2155-304 obtained by the TANAMI program, and we address the degeneracies inherent to such a complex model by employing a state-of-the-art exploration of parameter space, which so far has been mostly neglected in the study of AGN jets. We find that this new approach is much more effective than a single-epoch fit in providing meaningful constraints on model parameters.
The Infrared Space Observatory (ISO) observed the BL Lac object PKS 2155-304 16 times from 1996, May 7 to June 8, with both the ISOCAM camera and the ISOPHOT photometer, as part of a more general multiwavelength campaign. Two additional observations
We report the first hard X-ray observations with NuSTAR of the BL Lac type blazar PKS 2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in April 2013 when the source was in a ver
We present theoretical modelling for the very rapid TeV variability of PKS 2155--304 observed recently by the H.E.S.S. experiment. To explain the light-curve, where at least five flaring events were well observed, we assume five independent component
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored reg
PKS 2155-304 is one of the brightest blazar located in Southern Hemisphere, monitored with H.E.S.S. since the first light of the experiment. Here we report multiwavelength monitoring observations collected during the period of 2015-2016 with H.E.S.S.