ترغب بنشر مسار تعليمي؟ اضغط هنا

Federating distributed storage for clouds in ATLAS

318   0   0.0 ( 0 )
 نشر من قبل Frank Berghaus
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Input data for applications that run in cloud computing centres can be stored at distant repositories, often with multiple copies of the popular data stored at many sites. Locating and retrieving the remote data can be challenging, and we believe that federating the storage can address this problem. A federation would locate the closest copy of the data on the basis of GeoIP information. Currently we are using the dynamic data federation Dynafed, a software solution developed by CERN IT. Dynafed supports several industry standards for connection protocols like Amazons S3, Microsofts Azure, as well as WebDAV and HTTP. Dynafed functions as an abstraction layer under which protocol-dependent authentication details are hidden from the user, requiring the user to only provide an X509 certificate. We have setup an instance of Dynafed and integrated it into the ATLAS data distribution management system. We report on the challenges faced during the installation and integration. We have tested ATLAS analysis jobs submitted by the PanDA production system and we report on our first experiences with its operation.



قيم البحث

اقرأ أيضاً

We present Kaleidoscope an innovative system that supports live forensics for application performance problems caused by either individual component failures or resource contention issues in large-scale distributed storage systems. The design of Kale idoscope is driven by our study of I/O failures observed in a peta-scale storage system anonymized as PetaStore. Kaleidoscope is built on three key features: 1) using temporal and spatial differential observability for end-to-end performance monitoring of I/O requests, 2) modeling the health of storage components as a stochastic process using domain-guided functions that accounts for path redundancy and uncertainty in measurements, and, 3) observing differences in reliability and performance metrics between similar types of healthy and unhealthy components to attribute the most likely root causes. We deployed Kaleidoscope on PetaStore and our evaluation shows that Kaleidoscope can run live forensics at 5-minute intervals and pinpoint the root causes of 95.8% of real-world performance issues, with negligible monitoring overhead.
Storage and memory systems for modern data analytics are heavily layered, managing shared persistent data, cached data, and non-shared execution data in separate systems such as distributed file system like HDFS, in-memory file system like Alluxio an d computation framework like Spark. Such layering introduces significant performance and management costs for copying data across layers redundantly and deciding proper resource allocation for all layers. In this paper we propose a single system called Pangea that can manage all data---both intermediate and long-lived data, and their buffer/caching, data placement optimization, and failure recovery---all in one monolithic storage system, without any layering. We present a detailed performance evaluation of Pangea and show that its performance compares favorably with several widely used layered systems such as Spark.
Erasure codes are increasingly being studied in the context of implementing atomic memory objects in large scale asynchronous distributed storage systems. When compared with the traditional replication based schemes, erasure codes have the potential of significantly lowering storage and communication costs while simultaneously guaranteeing the desired resiliency levels. In this work, we propose the Storage-Optimized Data-Atomic (SODA) algorithm for implementing atomic memory objects in the multi-writer multi-reader setting. SODA uses Maximum Distance Separable (MDS) codes, and is specifically designed to optimize the total storage cost for a given fault-tolerance requirement. For tolerating $f$ server crashes in an $n$-server system, SODA uses an $[n, k]$ MDS code with $k=n-f$, and incurs a total storage cost of $frac{n}{n-f}$. SODA is designed under the assumption of reliable point-to-point communication channels. The communication cost of a write and a read operation are respectively given by $O(f^2)$ and $frac{n}{n-f}(delta_w+1)$, where $delta_w$ denotes the number of writes that are concurrent with the particular read. In comparison with the recent CASGC algorithm, which also uses MDS codes, SODA offers lower storage cost while pays more on the communication cost. We also present a modification of SODA, called SODA$_{text{err}}$, to handle the case where some of the servers can return erroneous coded elements during a read operation. Specifically, in order to tolerate $f$ server failures and $e$ error-prone coded elements, the SODA$_{text{err}}$ algorithm uses an $[n, k]$ MDS code such that $k=n-2e-f$. SODA$_{text{err}}$ also guarantees liveness and atomicity, while maintaining an optimized total storage cost of $frac{n}{n-f-2e}$.
The start of data taking at the Large Hadron Collider will herald a new era in data volumes and distributed processing in particle physics. Data volumes of hundreds of Terabytes will be shipped to Tier-2 centres for analysis by the LHC experiments us ing the Worldwide LHC Computing Grid (WLCG). In many countries Tier-2 centres are distributed between a number of institutes, e.g., the geographically spread Tier-2s of GridPP in the UK. This presents a number of challenges for experiments to utilise these centres efficaciously, as CPU and storage resources may be sub-divided and exposed in smaller units than the experiment would ideally want to work with. In addition, unhelpful mismatches between storage and CPU at the individual centres may be seen, which make efficient exploitation of a Tier-2s resources difficult. One method of addressing this is to unify the storage across a distributed Tier-2, presenting the centres aggregated storage as a single system. This greatly simplifies data management for the VO, which then can access a greater amount of data across the Tier-2. However, such an approach will lead to scenarios where analysis jobs on one sites batch system must access data hosted on another site. We investigate this situation using the Glasgow and Edinburgh clusters, which are part of the ScotGrid distributed Tier-2. In particular we look at how to mitigate the problems associated with ``distant data access and discuss the security implications of having LAN access protocols traverse the WAN between centres.
Motivated by emerging applications to the edge computing paradigm, we introduce a two-layer erasure-coded fault-tolerant distributed storage system offering atomic access for read and write operations. In edge computing, clients interact with an edge -layer of servers that is geographically near; the edge-layer in turn interacts with a back-end layer of servers. The edge-layer provides low latency access and temporary storage for client operations, and uses the back-end layer for persistent storage. Our algorithm, termed Layered Data Storage (LDS) algorithm, offers several features suitable for edge-computing systems, works under asynchronous message-passing environments, supports multiple readers and writers, and can tolerate $f_1 < n_1/2$ and $f_2 < n_2/3$ crash failures in the two layers having $n_1$ and $n_2$ servers, respectively. We use a class of erasure codes known as regenerating codes for storage of data in the back-end layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes, not only optimizes the cost of back-end storage, but also helps in optimizing communication cost of read operations, when the value needs to be recreated all the way from the back-end. The two-layer architecture permits a modular implementation of atomicity and erasure-code protocols; the implementation of erasure-codes is mostly limited to interaction between the two layers. We prove liveness and atomicity of LDS, and also compute performance costs associated with read and write operations. Further, in a multi-object system running $N$ independent instances of LDS, where only a small fraction of the objects undergo concurrent accesses at any point during the execution, the overall storage cost is dominated by that of persistent storage in the back-end layer, and is given by $Theta(N)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا