ﻻ يوجد ملخص باللغة العربية
For opto-electronic and photo-voltaic applications of perovskites, it is essential to know the optical properties and intrinsic losses of the used materials. A systematic microscopic analysis is presented for the example of methylammonium lead iodide where density functional theory is used to calculate the electronic band structure as well as the dipole and Coulomb matrix elements. These results serve as input for a many-body quantum approach used to compute the absorption, photoluminescence, and the optical and Auger losses for a wide range of application conditions. To illustrate the theory, the excitonic properties of the material system are investigated and numerical results are presented for typical photo-voltaic operation conditions and for the elevated carrier densities needed for laser operation.
Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missi
Hybrid organic-inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron-phonon coupling plays a critical role in all optoelectronic devices, and although the lattic
Methylammonium lead iodide perovskites are considered direct bandgap semiconductors. Here we show that in fact they present a weakly indirect bandgap 60 meV below the direct bandgap transition. This is a consequence of spin-orbit coupling resulting i
Recently, an aziridinium lead iodide perovskite was proposed as a possible solar cell absorber material. We investigated the stability of this material using a density-functional theory with an emphasis on the ring strain associated with the three-me
Despite the imperative importance in solar-cell efficiency, the intriguing phenomena at the interface between perovskite solar-cell and adjacent carrier transfer layers are hardly uncovered. Here we show that PbI$_2$/AI-terminated lead-iodide-perovsk