ﻻ يوجد ملخص باللغة العربية
Understanding the formation mechanisms of protoplanetary disks and multiple systems, and their pristine properties, is a key question for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. In the framework of the IRAM-PdBI CALYPSO survey, we have obtained sub-arcsecond observations of the dust continuum emission at 231 GHz and 94 GHz, for a sample of 16 solar-type Class 0 protostars. In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we model the dust continuum emission visibility profiles using both Plummer-like envelope models and envelope models including additional Gaussian disk-like components. Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii > 60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (> 72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii < 60 au. Our multiplicity fraction at scales 100-5000 au is in global agreement with the multiplicity properties of Class I protostars at similar scales. We confront our observational constraints on the disk size distribution in Class 0 protostars to the typical disk properties from protostellar formation models. Because they reduce the centrifugal radius, and produce a disk size distribution peaking at radii <100 au during the main accretion phase, magnetized models of rotating protostellar collapse are favored by our observations.
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB
We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class~0 protostar NGC1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner pa
Context. The process of mass accretion in the earliest phases of star formation is still not fully understood: Does the accretion rate smoothly decline with the age of the protostar or are there short, intermittent accretion bursts? Aims. We aim to e
Context. Snow lines, marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much
The formation process of binary stars and multiple systems is poorly understood. Here, we seek to determine the typical outcome of protostellar collapse and to constrain models of binary formation by core fragmentation during collapse, using high-res