ﻻ يوجد ملخص باللغة العربية
Dense particulate suspensions can not only increase their viscosity and shear thicken under external forcing, but also jam into a solid-like state that is fully reversible when the force is removed. An impact on the surface of a dense suspension can trigger this jamming process by generating a shear front that propagates into the bulk of the system. Tracking and visualizing such a front is difficult because suspensions are optically opaque and the front can propagate as fast as several meters per second. Recently, high-speed ultrasound imaging has been used to overcome this problem and extract two-dimensional sections of the flow field associated with jamming front propagation. Here we extend this method to reconstruct the three-dimensional flow field. This enables us to investigate the evolution of jamming fronts for which axisymmetry cannot be assumed, such as impact at angles tilted away from the normal to the free surface of the suspension. We find that sufficiently far from solid boundaries the resulting flow field is approximately identical to that generated by normal impact, but rotated and aligned with the angle of impact. However, once the front approaches the solid boundary at the bottom of the container, it generates a squeeze flow that deforms the front profile and causes jamming to proceed in a non-axisymmetric manner.
A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr
Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volu
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system `flow diagram in the volume fraction/stress plane $(phi,F)$: at low $phi$ the flow i