ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring magnetic resonance with a compass

153   0   0.0 ( 0 )
 نشر من قبل Igor Barsukov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic resonance plays an important role in todays science, engineering, and medical diagnostics. Learning and teaching magnetic resonance is challenging since it requires advanced knowledge of condensed matter physics and quantum mechanics. Driven by the need to popularize this technologically impactful phenomenon, we develop an inexpensive table-top demonstration experiment. It unveils the magnetic resonance of a hand-held compass in the magnetic fields of a permanent magnet. The setup provides an immediate visualization of the underlying physical concepts and allows for their translation to broad student audiences.



قيم البحث

اقرأ أيضاً

We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.
Covariational reasoning -- reasoning about how changes in one quantity relate to changes in another quantity -- has been examined extensively in mathematics education research. Little research has been done, however, on covariational reasoning in int roductory physics contexts. We explore one aspect of covariational reasoning: ``goes like reasoning. ``Goes like reasoning refers to ways physicists relate two quantities through a simplified function. For example, physicists often say that ``the electric field goes like one over r squared. While this reasoning mode is used regularly by physicists and physics instructors, how students make sense of and use it remains unclear. We present evidence from reasoning inventory items which indicate that many students are sense making with tools from prior math instruction, that could be developed into expert ``goes like thinking with direct instruction. Recommendations for further work in characterizing student sense making as a foundation for future development of instruction are made.
115 - M. Lapert , Y. Zhang , M. Janich 2012
Magnetic Resonance Imaging has become nowadays an indispensable tool with applications ranging from medicine to material science. However, so far the physical limits of the maximum achievable experimental contrast were unknown. We introduce an approa ch based on principles of optimal control theory to explore these physical limits, providing a benchmark for numerically optimized robust pulse sequences which can take into account experimental imperfections. This approach is demonstrated experimentally using a model system of two spatially separated liquids corresponding to blood in its oxygenated and deoxygenated forms.
The error-robust and short composite operations named ConCatenated Composite Pulses (CCCPs), developed as high-precision unitary operations in quantum information processing (QIP), are derived from composite pulses widely employed in nuclear magnetic resonance (NMR). CCCPs simultaneously compensate for two types of systematic errors, which was not possible with the known composite pulses in NMR. Our experiments demonstrate that CCCPs are powerful and versatile tools not only in QIP but also in NMR.
We study thermal instability in NbN superconducting stripline resonators. The system exhibits extreme nonlinearity near a bifurcation, which separates a monostable zone and an astable one. The lifetime of the metastable state, which is locally stable in the monostable zone, is measure near the bifurcation and the results are compared with a theory. Near bifurcation, where the lifetime becomes relatively short, the system exhibits strong amplification of a weak input modulation signal. We find that the frequency bandwidth of this amplification mechanism is limited by the rate of thermal relaxation. When the frequency of the input modulation signal becomes comparable or larger than this rate the response of the system exhibits sub-harmonics of various orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا