ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchrotron radiation interaction with cryosorbed layers for astrochemical investigations

65   0   0.0 ( 0 )
 نشر من قبل R\\'emi Dupuy
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photon-stimulated desorption (PSD) is a process of interest for the two seemingly unrelated topics of accelerator vacuum dynamics and astrochemistry. Here we present an approach to studying PSD of interstellar ice analogs, i.e. condensed films of molecules of astrophysical interest at cryogenic temperatures, using synchrotron radiation. We present results obtained in the VUV range on various pure and layered ices, focusing on elucidating the desorption mechanisms, and results in the X-ray range for H$_2$O.



قيم البحث

اقرأ أيضاً

124 - S. Kneip , C. McGuffey , F. Dollar 2011
Since their discovery in 1896, x-rays have had a profound impact on science, medicine and technology. Here we show that the x-rays from a novel tabletop source of bright coherent synchrotron radiation can be applied to phase contrast imaging of biolo gical specimens, yielding superior image quality and avoiding the need for scarce or expensive conventional sources.
We propose a new model for treating solid-phase photoprocesses in interstellar ice analogues. In this approach, photoionization and photoexcitation are included in more detail, and the production of electronically-excited (suprathermal) species is ex plicitly considered. In addition, we have included non-thermal, non-diffusive chemistry to account for the low-temperature characteristic of cold cores. As an initial test of our method, we have simulated two previous experimental studies involving the UV irradiation of pure solid O$_2$. In contrast to previous solid-state astrochemical model calculations which have used gas-phase photoabsorption cross-sections, we have employed solid-state cross-sections in our calculations. This method allows the model to be tested using well-constrained experiments rather than poorly constrained gas-phase abundances in ISM regions. Our results indicate that inclusion of non-thermal reactions and suprathermal species allows for reproduction of low-temperature solid-phase photoprocessing that simulate interstellar ices within cold ($sim$ 10 K) dense cores such as TMC-1.
The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the st atistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.
The classical description of synchrotron radiation fails at large Lorentz factors, $gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critica l field $B_0 = 4.414cdot10^9$ T. For $chi = gamma B/B_0 simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $<110>$ axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity.
We explore the energetics of the titular reaction, which current astrochemical databases consider open at typical dense molecular (i.e., dark) cloud conditions. As is common for reactions involving the transfer of light particles, we assume that ther e are no intersystem crossings of the potential energy surfaces involved. In the absence of any such crossings, we find that this reaction is endoergic and will be suppressed at dark cloud temperatures. Updating accordingly a generic astrochemical model for dark clouds changes the predicted gas-phase abundances of 224 species by greater than a factor of 2. Of these species, 43 have been observed in the interstellar medium. Our findings demonstrate the astrochemical importance of determining the role of intersystem crossings, if any, in the titular reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا