ﻻ يوجد ملخص باللغة العربية
The energy equalities of compressible Navier-Stokes equations with general pressure law and degenerate viscosities are studied. By using a unified approach, we give sufficient conditions on the regularity of weak solutions for these equalities to hold. The method of proof is suitable for the case of periodic as well as homogeneous Dirichlet boundary conditions. In particular, by a careful analysis using the homogeneous Dirichlet boundary condition, no boundary layer assumptions are required when dealing with bounded domains with boundary.
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
It is well-known that a Leray-Hopf weak solution in $L^4 (0,T; L^4(Omega))$ for the incompressible Navier-Stokes system is persistence of energy due to Lions [19]. In this paper, it is shown that Lionss condition for energy balance is also valid for
In this paper we consider the barotropic compressible quantum Navier-Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanish. Following recent works on degenerate compressible Navier-Stokes equa
We prove the existence of relative finite-energy vanishing viscosity solutions of the one-dimensional, isentropic Euler equations under the assumption of an asymptotically isothermal pressure law, that is, $p(rho)/rho = O(1)$ in the limit $rho to inf
In this paper, inspired by the study of the energy flux in local energy inequality of the 3D incompressible Navier-Stokes equations, we improve almost all the blow up criteria involving temperature to allow the temperature in its scaling invariant sp