ﻻ يوجد ملخص باللغة العربية
We develop new perturbation techniques for conducting convergence analysis of various first-order algorithms for a class of nonsmooth optimization problems. We consider the iteration scheme of an algorithm to construct a perturbed stationary point set-valued map, and define the perturbing parameter by the difference of two consecutive iterates. Then, we show that the calmness condition of the induced set-valued map, together with a local version of the proper separation of stationary value condition, is a sufficient condition to ensure the linear convergence of the algorithm. The equivalence of the calmness condition to the one for the canonically perturbed stationary point set-valued map is proved, and this equivalence allows us to derive some sufficient conditions for calmness by using some recent developments in variational analysis. These sufficient conditions are different from existing results (especially, those error-bound-based ones) in that they can be easily verified for many concrete application models. Our analysis is focused on the fundamental proximal gradient (PG) method, and it enables us to show that any accumulation of the sequence generated by the PG method must be a stationary point in terms of the proximal subdifferential, instead of the limiting subdifferential. This result finds the surprising fact that the solution quality found by the PG method is in general superior. Our analysis also leads to some improvement for the linear convergence results of the PG method in the convex case. The new perturbation technique can be conveniently used to derive linear rate convergence of a number of other first-order methods including the well-known alternating direction method of multipliers and primal-dual hybrid gradient method, under mild assumptions.
Many problems in science and engineering involve, as part of their solution process, the consideration of a separable function which is the sum of two convex functions, one of them possibly non-smooth. Recently a few works have discussed inexa
This work studies a class of non-smooth decentralized multi-agent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common non-smooth term. We propose a general primal-dual algorithmic fr
In this paper, we propose two new solution schemes to solve the stochastic strongly monotone variational inequality problems: the stochastic extra-point solution scheme and the stochastic extra-momentum solution scheme. The first one is a general sch
We present a unified convergence analysis for first order convex optimization methods using the concept of strong Lyapunov conditions. Combining this with suitable time scaling factors, we are able to handle both convex and strong convex cases, and e
This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. I