ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous large datasets integration using Bayesian factor regression

117   0   0.0 ( 0 )
 نشر من قبل Alejandra Avalos-Pacheco
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Two key challenges in modern statistical applications are the large amount of information recorded per individual, and that such data are often not collected all at once but in batches. These batch effects can be complex, causing distortions in both mean and variance. We propose a novel sparse latent factor regression model to integrate such heterogeneous data. The model provides a tool for data exploration via dimensionality reduction while correcting for a range of batch effects. We study the use of several sparse priors (local and non-local) to learn the dimension of the latent factors. Our model is fitted in a deterministic fashion by means of an EM algorithm for which we derive closed-form updates, contributing a novel scalable algorithm for non-local priors of interest beyond the immediate scope of this paper. We present several examples, with a focus on bioinformatics applications. Our results show an increase in the accuracy of the dimensionality reduction, with non-local priors substantially improving the reconstruction of factor cardinality, as well as the need to account for batch effects to obtain reliable results. Our model provides a novel approach to latent factor regression that balances sparsity with sensitivity and is highly computationally efficient.



قيم البحث

اقرأ أيضاً

Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across su bjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimers disease.
Recent evidence has shown that structural magnetic resonance imaging (MRI) is an effective tool for Alzheimers disease (AD) prediction and diagnosis. While traditional MRI-based diagnosis uses images acquired at a single time point, a longitudinal st udy is more sensitive and accurate in detecting early pathological changes of the AD. Two main difficulties arise in longitudinal MRI-based diagnosis: (1) the inconsistent longitudinal scans among subjects (i.e., different scanning time and different total number of scans); (2) the heterogeneous progressions of high-dimensional regions of interest (ROIs) in MRI. In this work, we propose a novel feature selection and estimation method which can be applied to extract features from the heterogeneous longitudinal MRI. A key ingredient of our method is the combination of smoothing splines and the $l_1$-penalty. We perform experiments on the Alzheimers Disease Neuroimaging Initiative (ADNI) database. The results corroborate the advantages of the proposed method for AD prediction in longitudinal studies.
122 - Daisuke Murakami 2021
This study presents application examples of generalized spatial regression modeling for count data and continuous non-Gaussian data using the spmoran package (version 0.2.2 onward). Section 2 introduces the model. The subsequent sections demonstrate applications of the model for disease mapping, spatial prediction and uncertainty modeling, and hedonic analysis. The R codes used in this vignette are available from https://github.com/dmuraka/spmoran. Another vignette focusing on Gaussian spatial regression modeling is also available from the same GitHub page.
This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
283 - Duncan Lee , Gavin Shaddick 2012
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dy namic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can be modelled by an autoregressive process rather than a smooth function of calendar time; (ii) the effects of air pollution are allowed to evolve over time. The efficacy of these two extensions are investigated by applying a series of dynamic and non-dynamic models to air pollution and mortality data from Greater London. A Bayesian approach is taken throughout, and a Markov chain monte carlo simulation algorithm is presented for inference. An alternative likelihood based analysis is also presented, in order to allow a direct comparison with the only previous analysis of air pollution and health data using a DGLM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا