ﻻ يوجد ملخص باللغة العربية
We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.
In the present-day Universe, magnetic fields pervade galaxy clusters, with strengths of a few microGauss obtained from Faraday Rotation. Evidence for cluster magnetic fields is also provided by Megaparsec-scale radio emission, namely radio halos and
We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use
Magnetic fields have been observed in galaxy clusters with strengths of the order of $sim mu$G. The non-thermal pressure exerted by magnetic fields also contributes to the total pressure in galaxy clusters and can in turn affect the estimates of the
The mass function of galaxy clusters is a powerful tool to constrain cosmological parameters, e.g., the mass fluctuation on the scale of 8 h^{-1} Mpc, sigma_8, and the abundance of total matter, Omega_m. We first determine the scaling relations betwe
Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so