ترغب بنشر مسار تعليمي؟ اضغط هنا

SkyMapper stellar parameters for Galactic Archaeology on a grand-scale

161   0   0.0 ( 0 )
 نشر من قبل Luca Casagrande
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SkyMapper photometric surveys provides uvgriz photometry for several millions sources in the Southern sky. We use DR1.1 to explore the quality of its photometry, and develop a formalism to homogenise zero-points across the sky using stellar effective temperatures. Physical flux transformations, and zero-points appropriate for this release are derived, along with relations linking colour indices to stellar parameters. Reddening-free pseudo-colours and pseudo-magnitudes are also introduced. For late-type stars which are best suited for Galactic Archaeology, we show that SkyMapper+2MASS are able to deliver a precision better than 100K in effective temperatures (depending on the filters), ~0.2dex for metallicities above -2, and a reliable distinction between M-dwarfs and -giants. Together with astrometric and asteroseismic space mission, SkyMapper promises to be a treasure trove for stellar and Galactic studies.



قيم البحث

اقرأ أيضاً

132 - Takuma Suda 2012
A tutorial for the Stellar Abundances for Galactic Archaeology (SAGA) database is presented. This paper describes the outline of the database, reports the current status of the data compilation and known problems, and presents plans for future updates and extensions.
Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age-initial-mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red-giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental pre-requisite to then reach the more ambitious goal of a similar level of accuracy, which will only be possible if we have to hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal which conveniently falls within the main aims of PLATOs core science.
Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous sci entific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.
A period of quenching between the formation of the thick and thin disks of the Milky Way has been recently proposed to explain the observed age-[{alpha}/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite) will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been difficult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent constraints on the formation and evolution of the Milky Way.
We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with different optical spectrographs: UVES at VLT, HARPS at 3.6m, FEROS at 2.2m MPG/ESO, and STELLA. To improve the e ffective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (between 5348 and 8427 angstrom) and in effective temperatures (between 3500 and 7700 K). This means the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100 K. Thanks to the high signal-to-noise ratio of individual spectra we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of Fe I (more than one hundred) and Fe II (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1 dex. Here we focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree quite well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا