ﻻ يوجد ملخص باللغة العربية
Common envelope (CE) is an important phase in the evolution of interacting evolved binary systems. The interaction of the binary components during the CE evolution (CEE) stage gives rise to orbital inspiral and the formation of a short-period binary or a merger, on the expense of extending and/or ejecting the envelope. CEE is not well understood, as hydrodynamical simulations show that only a fraction of the CE-mass is ejected during the dynamical inspiral, in contrast with observations of post-CE binaries. Different CE models suggest different timescales are involved in the CE-ejection, and hence a measurement of the CE-ejection timescale could provide direct constraints on the CEE-process. Here we propose a novel method for constraining the mass-loss timescale of the CE, using post-CE binaries which are part of wide-orbit triple systems. The orbit/existence of a third companion constrains the CE mass-loss timescale, since rapid CE mass-loss may disrupt the triple system, while slower CE mass-loss may change the orbit of the third companion without disrupting it. As first test-cases we examine two observed post-CE binaries in wide triples, Wolf-1130 and GD-319. We follow their evolution due to mass-loss using analytic and numerical tools, and consider different mass-loss functions. We calculate a wide grid of binary parameters and mass-loss timescales in order to determine the most probable mass-loss timescale leading to the observed properties of the systems. We find that mass-loss timescales of the order of $10^{3}-10^{5}{rm yr}$ are the most likely to explain these systems. Such long timescales are in tension with most of the CE mass-loss models, which predict shorter, dynamical timescales, but are potentially consistent with the longer timescales expected from the dust-driven winds model for CE ejection.
We present a new model describing the evolution of triple stars which undergo common envelope evolution, using a combination of analytic and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which
I study a triple star common envelope evolution (CEE) of a tight binary system that is spiraling-in inside a giant envelope and launches jets that spin-up the envelope with an angular momentum component perpendicular to the orbital angular momentum o
Post-asymptotic giant branch (post-AGB) stars with discs are all binaries. Many of these binaries have orbital periods between 100 and 1000 days so cannot have avoided mass transfer between the AGB star and its companion, likely through a common-enve
Context. An important ingredient in binary evolution is the common-envelope (CE) phase. Although this phase is believed to be responsible for the formation of many close binaries, the process is not well understood. Aims. We investigate the character
The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving