ترغب بنشر مسار تعليمي؟ اضغط هنا

Summarizing User-generated Textual Content: Motivation and Methods for Fairness in Algorithmic Summaries

117   0   0.0 ( 0 )
 نشر من قبل Abhisek Dash
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the amount of user-generated textual content grows rapidly, text summarization algorithms are increasingly being used to provide users a quick overview of the information content. Traditionally, summarization algorithms have been evaluated only based on how well they match human-written summaries (e.g. as measured by ROUGE scores). In this work, we propose to evaluate summarization algorithms from a completely new perspective that is important when the user-generated data to be summarized comes from different socially salient user groups, e.g. men or women, Caucasians or African-Americans, or different political groups (Republicans or Democrats). In such cases, we check whether the generated summaries fairly represent these different social groups. Specifically, considering that an extractive summarization algorithm selects a subset of the textual units (e.g. microblogs) in the original data for inclusion in the summary, we investigate whether this selection is fair or not. Our experiments over real-world microblog datasets show that existing summarization algorithms often represent the socially salient user-groups very differently compared to their distributions in the original data. More importantly, some groups are frequently under-represented in the generated summaries, and hence get far less exposure than what they would have obtained in the original data. To reduce such adverse impacts, we propose novel fairness-preserving summarization algorithms which produce high-quality summaries while ensuring fairness among various groups. To our knowledge, this is the first attempt to produce fair text summarization, and is likely to open up an interesting research direction.



قيم البحث

اقرأ أيضاً

As a highly data-driven application, recommender systems could be affected by data bias, resulting in unfair results for different data groups, which could be a reason that affects the system performance. Therefore, it is important to identify and so lve the unfairness issues in recommendation scenarios. In this paper, we address the unfairness problem in recommender systems from the user perspective. We group users into advantaged and disadvantaged groups according to their level of activity, and conduct experiments to show that current recommender systems will behave unfairly between two groups of users. Specifically, the advantaged users (active) who only account for a small proportion in data enjoy much higher recommendation quality than those disadvantaged users (inactive). Such bias can also affect the overall performance since the disadvantaged users are the majority. To solve this problem, we provide a re-ranking approach to mitigate this unfairness problem by adding constraints over evaluation metrics. The experiments we conducted on several real-world datasets with various recommendation algorithms show that our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
Over recent years a lot of research papers and studies have been published on the development of effective approaches that benefit from a large amount of user-generated content and build intelligent predictive models on top of them. This research app lies machine learning-based approaches to tackle the hurdles that come with Persian user-generated textual content. Unfortunately, there is still inadequate research in exploiting machine learning approaches to classify/cluster Persian text. Further, analyzing Persian text suffers from a lack of resources; specifically from datasets and text manipulation tools. Since the syntax and semantics of the Persian language is different from English and other languages, the available resources from these languages are not instantly usable for Persian. In addition, recognition of nouns and pronouns, parts of speech tagging, finding words boundary, stemming or character manipulations for Persian language are still unsolved issues that require further studying. Therefore, efforts have been made in this research to address some of the challenges. This presented approach uses a machine-translated datasets to conduct sentiment analysis for the Persian language. Finally, the dataset has been rehearsed with different classifiers and feature engineering approaches. The results of the experiments have shown promising state-of-the-art performance in contrast to the previous efforts; the best classifier was Support Vector Machines which achieved a precision of 91.22%, recall of 91.71%, and F1 score of 91.46%.
105 - Vasileios Lampos 2012
A vast amount of textual web streams is influenced by events or phenomena emerging in the real world. The social web forms an excellent modern paradigm, where unstructured user generated content is published on a regular basis and in most occasions i s freely distributed. The present Ph.D. Thesis deals with the problem of inferring information - or patterns in general - about events emerging in real life based on the contents of this textual stream. We show that it is possible to extract valuable information about social phenomena, such as an epidemic or even rainfall rates, by automatic analysis of the content published in Social Media, and in particular Twitter, using Statistical Machine Learning methods. An important intermediate task regards the formation and identification of features which characterise a target event; we select and use those textual features in several linear, non-linear and hybrid inference approaches achieving a significantly good performance in terms of the applied loss function. By examining further this rich data set, we also propose methods for extracting various types of mood signals revealing how affective norms - at least within the social webs population - evolve during the day and how significant events emerging in the real world are influencing them. Lastly, we present some preliminary findings showing several spatiotemporal characteristics of this textual information as well as the potential of using it to tackle tasks such as the prediction of voting intentions.
173 - Yun He , Yin Zhang , Weiwen Liu 2019
User-generated item lists are popular on many platforms. Examples include video-based playlists on YouTube, image-based lists (orboards) on Pinterest, book-based lists on Goodreads, and answer-based lists on question-answer forums like Zhihu. As user s create these lists, a common challenge is in identifying what items to curate next. Some lists are organized around particular genres or topics, while others are seemingly incoherent, reflecting individual preferences for what items belong together. Furthermore, this heterogeneity in item consistency may vary from platform to platform, and from sub-community to sub-community. Hence, this paper proposes a generalizable approach for user-generated item list continuation. Complementary to methods that exploit specific content patterns (e.g., as in song-based playlists that rely on audio features), the proposed approach models the consistency of item lists based on human curation patterns, and so can be deployed across a wide range of varying item types (e.g., videos, images, books). A key contribution is in intelligently combining two preference models via a novel consistency-aware gating network - a general user preference model that captures a users overall interests, and a current preference priority model that captures a users current (as of the most recent item) interests. In this way, the proposed consistency-aware recommender can dynamically adapt as user preferences evolve. Evaluation over four datasets(of songs, books, and answers) confirms these observations and demonstrates the effectiveness of the proposed model versus state-of-the-art alternatives. Further, all code and data are available at https://github.com/heyunh2015/ListContinuation_WSDM2020.
Recently deep learning based recommendation systems have been actively explored to solve the cold-start problem using a hybrid approach. However, the majority of previous studies proposed a hybrid model where collaborative filtering and content-based filtering modules are independently trained. The end-to-end approach that takes different modality data as input and jointly trains the model can provide better optimization but it has not been fully explored yet. In this work, we propose deep content-user embedding model, a simple and intuitive architecture that combines the user-item interaction and music audio content. We evaluate the model on music recommendation and music auto-tagging tasks. The results show that the proposed model significantly outperforms the previous work. We also discuss various directions to improve the proposed model further.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا