ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionic liquid gating of InAs nanowire-based field effect transistors

165   0   0.0 ( 0 )
 نشر من قبل Johanna Lieb
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the operation of a field-effect transistor based on a single InAs nanowire gated by an ionic liquid. Liquid gating yields very efficient carrier modulation with a transconductance value thirty time larger than standard back gating with the SiO2 /Si++ substrate. Thanks to this wide modulation we show the controlled evolution from semiconductor to metallic-like behavior in the nanowire. This work provides the first systematic study of ionic-liquid gating in electronic devices based on individual III-V semiconductor nanowires: we argue this architecture opens the way to a wide range of fundamental and applied studies from the phase-transitions to bioelectronics.



قيم البحث

اقرأ أيضاً

We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices ex ceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from about 100 cm2V-1s-1 at 180 K to about 220 cm2V-1s-1 at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >107 (104) for electrons (holes), and a near ideal sub-threshold swing of about 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin ionic-liquid dielectric layer.
We report a method for making horizontal wrap-gate nanowire transistors with up to four independently controllable wrap-gated segments. While the step up to two independent wrap-gates requires a major change in fabrication methodology, a key advantag e to this new approach, and the horizontal orientation more generally, is that achieving more than two wrap-gate segments then requires no extra fabrication steps. This is in contrast to the vertical orientation, where a significant subset of the fabrication steps needs to be repeated for each additional gate. We show that cross-talk between adjacent wrap-gate segments is negligible despite separations less than 200 nm. We also demonstrate the ability to make multiple wrap-gate transistors on a single nanowire using the exact same process. The excellent scalability potential of horizontal wrap-gate nanowire transistors makes them highly favourable for the development of advanced nanowire devices and possible integration with vertical wrap-gate nanowire transistors in 3D nanowire network architectures.
In this study, InSb nanowires have been formed by electrodeposition and integrated into NW-FETs. NWs were formed in porous anodic alumina (PAA) templates, with the PAA pore diameter of approximately 100 nm defining the NW diameter. Following annealin g at 125C and 420C respectively, the nanowires exhibited the zinc blende crystalline structure of InSb, as confirmed from x-ray diffraction and high resolution transmission electron microscopy. The annealed nanowires were used to fabricate nanowire field effect transistors (NW-FET) each containing a single NW with 500 nm channel length and gating through a 20nm SiO2 layer on a doped Si wafer. Following annealing of the NW-FETs at 300C for 10 minutes in argon ambient, transistor characteristics were observed with an ION ~ 40 uA (at VDS = 1V in a back-gate configuration), ION/IOFF ~ 16 - 20 in the linear regime of transistor operation and gd ~ 71uS. The field effect electron mobility extracted from the transconductance was ~1200 cm2 V-1 s-1 at room temperature. We report high on-current per nanowire compared with other reported NW-FETs with back-gate geometry and current saturation at low source-drain voltages. The device characteristics are not well described by long-channel MOSFET models, but can qualitatively be understood in terms of velocity saturation effects accounting for enhanced scattering
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires with nominally identical diameter. We compare the transfer characteristics and field-effect mobility ver sus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors.
The gating effect achieved by an ionic liquid and its electric double layer allows for charge transfer which can be an order of magnitude larger than with conventional dielectrics. However, the large charged ions also causes inevitable Coulomb scatte ring in the conducting channel formed at the interface, which can limit the carrier mobility enhancement. In this work, we study the effect of the LaAlO3 thickness on the transport properties in LaAlO3/SrTiO3 heterostructures by ionic liquid gating. We find that the transport properties of the LaAlO3/SrTiO3 interface are dominated by the intrinsic interactions rather than the LaAlO3 thickness and possible effects from the ions in the liquid. We observe a Kondo effect, which is enhanced while increasing the gate voltage. We also observe a gate-tunable and temperature-dependent anomalous Hall effect, which always emerges near the Kondo temperature. Our experiments pave the way to manipulate the various magnetic interactions in LaAlO3/SrTiO3 heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا