ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectrum of quantum-group-invariant transfer matrices

120   0   0.0 ( 0 )
 نشر من قبل Rafael I. Nepomechie
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrable open quantum spin-chain transfer matrices constructed from trigonometric R-matrices associated to affine Lie algebras $hat g$, and from certain K-matrices (reflection matrices) depending on a discrete parameter p, were recently considered in arXiv:1802.04864 and arXiv:1805.10144. It was shown there that these transfer matrices have quantum group symmetry corresponding to removing the p-th node from the $hat g$ Dynkin diagram. Here we determine the spectrum of these transfer matrices by using analytical Bethe ansatz, and we determine the dependence of the corresponding Bethe equations on p. We propose formulas for the Dynkin labels of the Bethe states in terms of the numbers of Bethe roots of each type.We also briefly study how duality transformations are implemented on the Bethe ansatz solutions.



قيم البحث

اقرأ أيضاً

It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group . A significant new contribution here is the construction of the Poincare generators using quantum fields.
Using anisotropic R-matrices associated with affine Lie algebras $hat g$ (specifically, $A_{2n}^{(2)}, A_{2n-1}^{(2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}$) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chai ns of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of $hat g$. We show that these transfer matrices also have a duality symmetry (for the cases $C_n^{(1)}$ and $D_n^{(1)}$) and additional $Z_2$ symmetries that map complex representations to their conjugates (for the cases $A_{2n-1}^{(2)}, B_n^{(1)}, D_n^{(1)}$). A key simplification is achieved by working in a certain unitary gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.
103 - Dorothea Bahns 2004
It is shown that the algebra of diffeomorphism-invariant charges of the Nambu-Goto string cannot be quantized in the framework of canonical quantization. The argument is shown to be independent of the dimension of the underlying Minkowski space.
We develop the formalism of quantum mechanics on three dimensional fuzzy space and solve the Schrodinger equation for a free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high ener gy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well have been calculated.
In this paper, we classify four-point local gluon S-matrices in arbitrary dimensions. This is along the same lines as cite{Chowdhury:2019kaq} where four-point local photon S-matrices and graviton S-matrices were classified. We do the classification e xplicitly for gauge groups $SO(N)$ and $SU(N)$ for all $N$ but our method is easily generalizable to other Lie groups. The construction involves combining not-necessarily-permutation-symmetric four-point S-matrices of photons and those of adjoint scalars into permutation symmetric four-point gluon S-matrix. We explicitly list both the components of the construction, i.e permutation symmetric as well as non-symmetric four point S-matrices, for both the photons as well as the adjoint scalars for arbitrary dimensions and for gauge groups $SO(N)$ and $SU(N)$ for all $N$. In this paper, we explicitly list the local Lagrangians that generate the local gluon S-matrices for $Dgeq 9$ and present the relevant counting for lower dimensions. Local Lagrangians for gluon S-matrices in lower dimensions can be written down following the same method. We also express the Yang-Mills four gluon S-matrix with gluon exchange in terms of our basis structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا