ﻻ يوجد ملخص باللغة العربية
The search for topological insulators has been actively promoted in the field of condensed matter physics for further development in energy-efficient information transmission and processing. In this context, recent studies have revealed that not only electrons but also bosonic particles such as magnons can construct edge states carrying nontrivial topological invariants. Here we demonstrate topological triplon bands in the spin-1/2 two-dimensional dimerized quantum antiferromagnet Ba$_2$CuSi$_2$O$_6$Cl$_2$, which is closely related to a pseudo-one-dimensional variant of the Su-Schrieffer-Heeger (SSH) model, through inelastic neutron scattering experiments. The excitation spectrum exhibits two triplon bands and a clear band gap between them due to a small alternation in interdimer exchange interactions along the $a$-direction, which is consistent with the crystal structure. The presence of topologically protected edge states is indicated by a bipartite nature of the lattice.
Edge states exhibit the nontrivial topology of energy band in the bulk. As localized states at boundaries, many-particle edge states may obey a special symmetry that is broken in the bulk. When local particle-particle interaction is induced, they may
Topological effects continue to fascinate physicists since more than three decades. One of their main applications are high-precision measurements of the resistivity. We propose to make also use of the spatially separated edge states. It is possible
Topological spin liquids are robust quantum states of matter with long-range entanglement and possess many exotic properties such as the fractional statistics of the elementary excitations. Yet these states, short of local parameters like all topolog
We discuss the ground state of the spin-orbital model for spin-one ions with partially filled $t_{2g}$ levels on a honeycomb lattice. We find that the orbital degrees of freedom induce a spontaneous dimerization of spins and drive them into nonmagnet
Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other n