ﻻ يوجد ملخص باللغة العربية
Under Newtonian dynamics, the relative motion of the components of a binary star should follow a Keplerian scaling with separation. Once orientation effects and a distribution of ellipticities are accounted for, dynamical evolution can be modelled to include the effects of Galactic tides and stellar mass perturbers, over the lifetime of the solar neighbourhood. This furnishes a prediction for the relative velocity between the components of a binary and their projected separation. Taking a carefully selected small sample of 81 solar neighbourhood wide binaries from the {it Hipparcos} catalogue, we identify these same stars in the recent Gaia DR2, to test the prediction mentioned using the latest and most accurate astrometry available. The results are consistent with the Newtonian prediction for projected separations below 7000 AU, but inconsistent with it at larger separations, where accelerations are expected to be lower than the critical $a_{0}=1.2 times 10^{-10} $ { m s$^{-2}$} value of MONDian gravity. This result challenges Newtonian gravity at low accelerations and shows clearly the appearance of gravitational anomalies of the type usually attributed to dark matter at galactic scales, now at much smaller stellar scales.
Using the recent GAIA eDR3 catalogue we construct a sample of solar neighbourhood isolated wide binaries satisfying a series of strict signal-to-noise data cuts, exclusion of random association criteria and detailed colour-magnitude diagram selection
Several recent studies have shown that very wide binary stars can potentially provide an interesting test for modified-gravity theories which attempt to emulate dark matter; these systems should be almost Newtonian according to standard dark-matter t
The standard LambdaCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravi
Over the last decades, numerous wide (>1000 AU) binaries have been discovered in the Galactic field and halo. The origin of these wide binaries cannot be explained by star formation or by dynamical interactions in the Galactic field. We explain their
We examine the distribution of on-sky relative velocities for wide binaries previously assembled from GAIA DR2 data and focus on the origin of the high velocity tail of apparently unbound systems which may be interpreted as evidence for non-Newtonian