ﻻ يوجد ملخص باللغة العربية
I show that a generic quantum phenomenon can drive cosmic acceleration without the need for dark energy or modified gravity. When treating the universe as a quantum system, one typically focuses on the scale factor (of an FRW spacetime) and ignores many other degrees of freedom. However, the information capacity of the discarded variables will inevitably change as the universe expands, generating quantum bias (QB) in the Friedmann equations [Phys. Lett. A 382, 36, 2555 (2018)|arXiv:1707.05789]. If information could be stored in each Planck-volume independently, this effect would give rise to a constant acceleration $10^{120}$ times larger than that observed, reproducing the usual cosmological constant problem. However, once information capacity is quantified according to the holographic principle, cosmic acceleration is far smaller and depends on the past behaviour of the scale factor. I calculate this holographic quantum bias, derive the semiclassical Friedmann equations, and obtain their general solution for a spatially-flat universe containing matter and radiation. Comparing these QB-CDM solutions to those of $Lambda$CDM, the new theory is shown to be falsifiable, but nonetheless consistent with current observations. In general, realistic QB cosmologies undergo phantom acceleration ($w_mathrm{eff}<-1$) at late times, predicting a Big Rip in the distant future.
In present article we consider an axion F(R) gravity model and described with the help of holographic principle the cosmological models of viscous dark fluid coupled with axion matter in a spatially flat Friedmann-Robertson-Walker (FRW) universe. Thi
Four-dimensional cosmological models are studied on a boundary of a five-dimensional Anti-de Sitter (AdS_5) black hole with AdS Reissner-Nordstrom and scalar charged Reissner- Nordstrom black hole solutions, where we call the former a Hairless black
We present a short review of possible applications of the Wheeler-De Witt equation to cosmological models based on the low-energy string effective action, and characterised by an initial regime of asymptotically flat, low energy, weak coupling evolut
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical
A Friedmann like cosmological model in Einstein-Cartan framework is studied when the torsion function is assumed to be proportional to a single $phi(t)$ function coming just from the spin vector contribution of ordinary matter. By analysing four diff