ﻻ يوجد ملخص باللغة العربية
In this paper we report a study of the isotopic composition of Li, Be, B and N, Ne nuclei from a 5 year time period beyond the heliopause using the CRS instruments on Voyager. By comparing the isotopic ratios, 15N/14N and 22Ne/20Ne outside the heliosphere as measured at Voyager, and which are found to be significantly lower than those measured at the same energy inside the heliosphere, we have provided strong evidence that cosmic rays of this energy have lost as much as 200 MeV/nuc or more in the solar modulation process. This is in accordance with the so called force field description of this overall modulation by Gleeson and Axford. The measurements at Voyager confirm that the unusual 14N and 22Ne cosmic ray source abundances relative to solar abundances made earlier inside the heliosphere extend to the lower energies not accessible from near Earth measurements. The low energy Li, Be and B nuclei, which are believed to be purely secondary nuclei, are found to have a (previously unobservable) peak in the differential intensity spectrum at ~100 MeV/nuc. This is in agreement with propagation predictions. The intensities of these nuclei are ~10-20% higher than those predicted in a propagation model with a matter path length lambda = 9 g/cm2 at these low energies. The isotopic composition of Li, Be and B nuclei is also consistent with that expected from propagation through interstellar matter.
Studies on Voyager 1 using the CRS instrument have shown the presence of sub-MeV electrons in the interstellar medium beyond the heliopause. We believe that these electrons are the very low energy tail of the distribution of galactic GeV cosmic ray e
This paper determines the relative source spectra of cosmic ray H and He nuclei using a Leaky Box model for galactic propagation and the observed spectra of these nuclei from ~10 MeV/nuc to ~1 TeV/nuc. The observations consist of Voyager 1 measuremen
Using Leaky Box Model propagation calculations for H nuclei and a Monte Carlo diffusion propagation model for electrons, starting from specific source spectra, we have matched the observed LIS spectra of these cosmic rays measured by Voyager at lower
We have obtained the energy spectra of cosmic ray He, B, C, O, Mg, S and Fe nuclei in the range 0.5-1.5 GeV/nuc and above using the penetrating particle mode of the High Energy Telescope, part of the Cosmic Ray Science (CRS) experiment on Voyagers 1
After the disappearance of lower energy heliospheric particles at Voyager 1 starting on August 25th, 2012, spectra of H, He and C/O nuclei were revealed that resembled those to be expected for galactic cosmic rays. These spectra had intensity peaks i