ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon properties of random alloys

104   0   0.0 ( 0 )
 نشر من قبل Lars Bergqvist
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study magnon properties in terms of spin stiffness, Curie temperatures and magnon spectrum of Fe-Ni, Co-Ni and Fe-Co random alloys using a combination of electronic structure calculations and atomistic spin dynamics simulations. Influence of the disorder are studied in detail by use of large supercells with random atomic arrangement. It is found that disorder affects the magnon spectrum in vastly different ways depending on the system. Specifically, it is more pronounced in Fe-Ni alloys compared to Fe-Co alloys. In particular, the magnon spectrum at room temperature in Permalloy (Fe$_{20}$Ni$_{80}$) is found to be rather diffuse in a large energy interval while in Fe$_{75}$Co$_{25}$ it forms sharp branches. Fe-Co alloys are very interesting from a technological point of view due to the combination of large Curie temperatures and very low calculated Gilbert damping of $sim$0.0007 at room temperature for Co concentrations around 20--30%.


قيم البحث

اقرأ أيضاً

The structure, magnetic properties, and lattice dynamics of ordered Fe-Pt alloys with three stoichiometric compositions, Fe$_3$Pt, FePt and FePt$_3$, have been investigated using the density functional theory. Additionally, the existing experimental data have been complemented by new measurements of the Fe projected phonon density of states performed for the Fe$_3$Pt and FePt$_3$ thin films using the nuclear inelastic scattering technique. The calculated phonon dispersion relations and phonon density of states have been compared with the experimental data. The dispersion curves are very well reproduced by the calculations, although, the softening of the transversal acoustic mode TA$_1$ leads to some discrepancy between the theory and experiment in Fe$_3$Pt. A very goood agreement between the measured spectra and calculations performed for the tetragonal structure derived from the soft mode may signal that the tetragonal phase with the space group $P4/mbm$ plays an important role in the martensitic transformation observed in Fe$_3$Pt. For FePt$_3$, the antiferromagnetic order appearing with decreasing temperature has been also investigated. The studies showed that the phonon density of states of FePt$_3$ very weakly depends on the magnetic configuration.
98 - J.H. Chen , Z. Y. Wei , E.K. Liu 2015
The crystal structures, martensitic structural transitions and magnetic properties of MnCo1-xFexSi (0 <= x <= 0.50) alloys were studied by differential scanning calorimetry (DSC), x-ray powder diffraction (XRD) and magnetic measurements. In high-temp erature paramagnetic state, the alloys undergo a martensitic structural transitions from the Ni2In-type hexagonal parent phase to the TiNiSi-type orthorhombic martensite. Both the martensitic transition temperature (TM) and Curie temperatures of martensite (T_C^M) decrease with increasing Fe content. The introduced Fe atoms establish ferromagnetic (FM) coupling between Fe-Mn atoms and destroy the double spiral antiferromagnetic (AFM) coupling in MnCoSi compound, resulting in a magnetic change in the martensite phase from a spiral AFM state to a FM state. For the alloys with x = 0.10, 0.15 and 0.20, a metamagnetic transition was observed in between the two magnetic states. A magnetostructural phase diagram of MnCo1-xFexSi (0 <= x <= 0.50) alloys was proposed.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
119 - Y. Du , G. Z. Xu , E. K. Liu 2013
In this paper, we investigate the half-metallicity of Heusler alloys Fe2Co1-xCrxSi by first principles calculations and anisotropy magnetoresistance measurements. It is found that, with the increase of Cr content x, the Fermi level of Fe2Co1-xCrxSi m oves from the top of valence band to the bottom of conduction band, and a large half-metallic band gap of 0.75 eV is obtained for x=0.75. We then successfully synthesized a series Heusler Fe2Co1-xCrxSi polycrystalline ribbon samples. The results of X-ray diffraction indicate that the Fe2Co1-xCrxSi series of samples are pure phase with a high degree of order and the saturation magnetic moment follows half-metallic Slater-Pauling rule. Except for the two end members, Fe2CoSi and Fe2CrSi, the anisotropic magnetoresistance of Fe2Co1-xCrxSi (x=0.25, 0.5, 0.75) show a negative value suggesting they are stable half-metallic ferromagnets.
103 - Ilja Turek 2016
The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static transport properties within th e so-called conserving approximations lead to the inversion of a singular matrix as a direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose a simple removal of the singularity for quantities (operators) with vanishing average values for electron states at the Fermi energy, such as the velocity or the spin torque; the proposed scheme is worked out in details in the self-consistent Born approximation and the coherent potential approximation. Applications involve calculations of the residual resistivity for various random alloys, including spin-polarized and relativistic systems, treated on an ab initio level, with particular attention paid to the role of different symmetries (inversion of space and time).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا