ترغب بنشر مسار تعليمي؟ اضغط هنا

From Asymmetric to Symmetric Fission in the Fermium Isotopes within the Time-Dependent GCM Formalism

71   0   0.0 ( 0 )
 نشر من قبل David Regnier
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting the properties of neutron-rich nuclei far from the valley of stability is one of the major challenges of modern nuclear theory. In heavy and superheavy nuclei, a difference of only a few neutrons is sufficient to change the dominant fission mode. A theoretical approach capable of predicting such rapid transitions for neutron-rich systems would be a valuable tool to better understand r-process nucleosynthesis or the decay of super-heavy elements. In this work, we investigate for the first time the transition from asymmetric to symmetric fission through the calculation of primary fission yields with the time-dependent generator coordinate method (TDGCM). We choose here the transition in neutron-rich Fermium isotopes, which was the first to be observed experimentally in the late seventies and is often used as a benchmark for theoretical studies. We compute the primary fission fragment mass and charge yields for 254 Fm, 256 Fm and 258 Fm from the TDGCM under the Gaussian overlap approximation. The static part of the calculation (generation of a potential energy surface) consists in a series of constrained Hartree-Fock-Bogoliubov calculations based on the D1S, D1M or D1N parameterizations of the Gogny effective interaction in a two-center harmonic oscillator basis. The 2-dimensional dynamics in the collective space spanned by the quadrupole and octupole moments is then computed with the finite element solver FELIX-2.0. The available experimental data and the TDGCM post-dictions are consistent and agree especially on the position in the Fermium isotopic chain at which the transition occurs. The main limitation of the method lies in the presence of discontinuities in the 2-dimensional manifold of generator states.



قيم البحث

اقرأ أيضاً

Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring d ynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the barrier explore large amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring d ynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way, and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission, or the corresponding adiabatic approaches.
We discuss properties of the method based on time dependent superfluid local density approximation (TDSLDA) within an application to induced fission of 240Pu and surrounding nuclei. Various issues related to accuracy of time evolution and the determi nation of the properties of fission fragments are discussed.
For the first time, we apply the temperature dependent relativistic mean field (TRMF) model to study the ternary fission of heavy nucleus using level density approach. The probability of yields of a particular fragment is obtained by evaluating the c onvolution integrals which employ the excitation energy and the level density parameter for a given temperature calculated within the TRMF formalism. To illustrate, we have considered the ternary fissions in 252Cf, 242Pu and 236U with fixed third fragment A3 = 48Ca, 20O and 16O respectively. The relative yields are studied for the temperatures T = 1, 2 and 3 MeV. For the comparison, the relative yields are also calculated from the single particle energies of the finite range droplet model (FRDM). In general, the larger phase space for the ternary fragmentation is observed indicating that such fragmentations are most probable ones. For T = 2 and 3 MeV, the Sn + Ni + Ca is the most probable combination for the nucleus 252Cf. However, for the nuclei 242Pu and 236U, the maximum fragmentation yields at T = 2 MeV differ from those at T = 3 MeV. For T = 3 MeV, the closed shell (Z = 8) light mass fragments with its corresponding partners has larger yield values. But, at T = 2 MeV Si/P/S are favorable fragments with the corresponding partners. It is noticed that the symmetric binary fragmentation along with the fixed third fragment for 242Pu and 236U are also favored at T = 1 MeV. The temperature dependence of the nuclear shape and the single particle energies are also discussed.
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first s tep to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to a dynamical scission point at larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا