ﻻ يوجد ملخص باللغة العربية
We apply tools from real algebraic geometry to the problem of multistationarity of chemical reaction networks. A particular focus is on the case of reaction networks whose steady states admit a monomial parametrization. For such systems we show that in the space of total concentrations multistationarity is scale invariant: if there is multistationarity for some value of the total concentrations, then there is multistationarity on the entire ray containing this value (possibly for different rate constants) -- and vice versa. Moreover, for these networks it is possible to decide about multistationarity independent of the rate constants by formulating semi-algebraic conditions that involve only concentration variables. These conditions can easily be extended to include total concentrations. Hence quantifier elimination may give new insights into multistationarity regions in the space of total concentrations. To demonstrate this, we show that for the distributive phosphorylation of a protein at two binding sites multistationarity is only possible if the total concentration of the substrate is larger than either the total concentration of the kinase or the total concentration of the phosphatase. This result is enabled by the chamber decomposition of the space of total concentrations from polyhedral geometry. Together with the corresponding sufficiency result of Bihan et al. this yields a characterization of multistationarity up to lower dimensional regions.
Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such
The lactose operon in Escherichia coli was the first known gene regulatory network, and it is frequently used as a prototype for new modeling paradigms. Historically, many of these modeling frameworks use differential equations. More recently, Stigle
This work investigates the emergence of oscillations in one of the simplest cellular signaling networks exhibiting oscillations, namely, the dual-site phosphorylation and dephosphorylation network (futile cycle), in which the mechanism for phosphoryl
Protein phosphorylation cycles are important mechanisms of the post translational modification of a protein and as such an integral part of intracellular signaling and control. We consider the sequential phosphorylation and dephosphorylation of a pro
Biochemical mechanisms with mass action kinetics are often modeled by systems of polynomial differential equations (DE). Determining directly if the DE system has multiple equilibria (multistationarity) is difficult for realistic systems, since they