ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the structural, electronic, transport and magnetic properties of Co$_2$FeGa Heusler alloy nanoparticles

82   0   0.0 ( 0 )
 نشر من قبل Rajendra S. Dhaka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the structural, transport, electronic, and magnetic properties of Co$_2$FeGa Heusler alloy nanoparticles. The Rietveld refinements of x-ray diffraction (XRD) data with the space group Fm$bar {3}$m clearly demonstrates that the nanoparticles are of single phase. The particle size (D) decreases with increasing the SiO$_2$ concentration. The Bragg peak positions and the inter-planer spacing extracted from high-resolution transmission electron microscopy image and selected area electron diffraction are in well agreement with data obtained from XRD. The coercivity initially increases from 127~Oe to 208~Oe between D = 8.5~nm and 12.5~nm, following the D$^{-3/2}$ dependence and then decreases with further increasing D up to 21.5~nm with a D$^{-1}$ dependence, indicating the transition from single domain to multidomain regime. The effective magnetic anisotropic constant behaves similarly as coercivity, which confirms this transition. A complex scattering mechanisms have been fitted to explain the electronic transport properties of these nanoparticles. In addition we have studied core-level and valence band spectra using photoemission spectroscopy, which confirm the hybridization between $d$ states of Co/Fe. Further nanoparticle samples synthesized by co-precipitation method show higher saturation magnetization. The presence of Raman active modes can be associated with the high chemical ordering, which motivates for detailed temperature dependent structural investigation using synchrotron radiation and neutron sources.



قيم البحث

اقرأ أيضاً

We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domai ns in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 $mu_B/f.u.$ at low temperatures. The temperature dependence of the resistivity $rho_{xx}(T)$ exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. $rho_{xx}(H)$ shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.
Co2FeAl (CFA) nanoparticles (NPs) of different sizes were synthesized by chemical route. The effect of the size of NPs upon the structure and magnetization compared to its bulk counterpart was investigated. The structure and composition were determin ed from X-ray diffraction (XRD) and electron microscopy. XRD analysis shows that the samples are having single (A2-type) disordered phase. Magnetization measurements suggest that the samples are soft ferromagnetic in nature with very low coercivity. Enhanced magnetic properties like saturation magnetization, coercive force, retentivity, and Curie-temperature are observed with a decrease in particle size. The effect of particle size on hysteresis losses is also discussed. The smallest particles of size 16 nm exhibited the highest saturation magnetization and transition temperature of 180.73 emu/g and 1261 K, respectively. The origin of enhancement in the magnetization of Co2FeAl nano-alloy is attributed to the strong Co-Co exchange interaction due to disorder present in the systems.
We present a comprehensive first principles electronic structure study of the magnetoelastic and magnetostrictive properties in the Co-based Co$_2$XAl (X = V, Ti, Cr, Mn, Fe) full Heusler compounds. In addition to the commonly used total energy appro ach, we employ torque method to calculate the magnetoelastic tensor elements. We show that the torque based methods are in general computationally more efficient, and allow to unveil the atomic- and orbital-contributions to the magnetoelastic constants in an exact manner, as opposed to the conventional approaches based on second order perturbation with respect to the spin-orbit coupling. The magnetostriction constants are in good agreement with available experimental data. The results reveal that the main contribution to the magnetostriction constants, $lambda_{100}$ and $lambda_{111}$, arises primarily from the strained-induced modulation of the $langle d_{x^2-y^2}|hat{L}_z|d_{xy}rangle$ and $langle d_{z^2}|hat{L}_x|d_{yz}rangle$ spin orbit coupling matrix elements, respectively, of the Co atoms.
We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morpho logy was measured using x-ray diffraction (XRD), x-ray absorption near edge spectroscopy (XANES) at Fe $L$ and C $K$-edges and atomic/magnetic force microscopy (AFM, MFM), respectively. An ultrathin (3,nm) $^{57}$FeC~layer, placed between relatively thick FeC~layers was used to estimate Fe self-diffusion taking place during growth at different Ts~using depth profiling measurements. Such $^{57}$FeC~layer was also used for $^{57}$Fe conversion electron M{o}ssbauer spectroscopy (CEMS) and nuclear resonance scattering (NRS) measurements, yielding the magnetic structure of this ultrathin layer. We found from XRD measurements that the structure formed at low Ts~(300,K) is analogous to Fe-based amorphous alloy and at high Ts~(773,K), pre-dominantly a tifc~phase has been formed. Interestingly, at an intermediate Ts~(523,K), a clear presence of tefc~(along with tifc~and Fe) can be seen from the NRS spectra. The microstructure obtained from AFM images was found to be in agreement with XRD results. MFM images also agrees well with NRS results as the presence of multi-magnetic components can be clearly seen in the sample grown at Ts~= 523,K. The information about the hybridization between Fe and C, obtained from Fe $L$ and C $K$-edges XANES also supports the results obtained from other measurements. In essence, from this work, experimental realization of tefc~has been demonstrated. It can be anticipated that by further fine-tuning the deposition conditions, even single phase tefc~phase can be realized which hitherto remains an experimental challenge.
We demonstrate room-temperature stabilization of dipolar magnetic skyrmions with diameters in the range of $100$ nm in a single ultrathin layer of the Heusler alloy Co$_2$FeAl (CFA) under moderate magnetic fields. Current-induced skyrmion dynamics in microwires is studied with a scanning Nitrogen-Vacancy magnetometer operating in the photoluminescence quenching mode. We first demonstrate skyrmion nucleation by spin-orbit torque and show that its efficiency can be significantly improved using tilted magnetic fields, an effect which is not specific to Heusler alloys and could be advantageous for future skyrmion-based devices. We then show that current-induced skyrmion motion remains limited by strong pinning effects, even though CFA is a magnetic material with a low magnetic damping parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا