ﻻ يوجد ملخص باللغة العربية
Friedl and Kim show any taut sutured manifold can be realized as a twisted homology product, but their proof gives no practical description of how complicated the realizing representation needs to be. We give a number of results illustrating the relationship between the topology of a taut sutured handlebody and the complexity of a representation realizing it as a homology product.
We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold D x I has rank 1 if and only if the tangle is isotopic to a braid.
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Man
Morrison, Walker, and Wedrich used the blob complex to construct a generalization of Khovanov-Rozansky homology to links in the boundary of a 4-manifold. The degree zero part of their theory, called the skein lasagna module, admits an elementary defi
Suppose $(M, gamma)$ is a balanced sutured manifold and $K$ is a rationally null-homologous knot in $M$. It is known that the rank of the sutured Floer homology of $Mbackslash N(K)$ is at least twice the rank of the sutured Floer homology of $M$. Thi
We study 4-dimensional homology cobordisms without 3-handles, showing that they interact nicely with Thurston geometries, character varieties, and instanton and Heegaard Floer homologies. Using these, we derive obstructions to such cobordisms, with topological applications.